Skip to main content
Log in

Force field development phase II: Relaxation of physics-based criteria… or inclusion of more rigorous physics into the representation of molecular energetics

  • Perspective
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In the previous paper, we reviewed the origins of energy based calculations, and the early science of FF development. The initial efforts spanning the period from roughly the early 1970s to the mid to late 1990s saw the development of methodologies and philosophies of the derivation of FFs. The use of Cartesian coordinates, derivation of the H-bond potential, different functional forms including diagonal quadratic expressions, coupled valence FFs, functional form of combination rules, and out of plane angles, were all investigated in this period. The use of conformational energetics, vibrational frequencies, crystal structure and energetics, liquid properties, and ab initio data were all described to one degree or another in deriving and validating both the FF functional forms and force constants. Here we discuss the advances made since in improving the rigor and robustness of these initial FFs. The inability of the simple quadratic diagonal FF to accurately describe biomolecular energetics over a large domain of molecular structure, and intermolecular configurations, was pointed out in numerous studies. Two main approaches have been taken to overcome this problem. The first involves the introduction of error functions, either exploiting torsion terms or introducing explicit 2-D error correction grids. The results and remaining challenges of these functional forms is examined. The second approach has been to improve the representation of the physics of intra and intermolecular interactions. The latter involves including descriptions of polarizability, charge flux aka geometry dependent charges, more accurate representations of spatial electron density such as multipole moments, anisotropic nonbond potentials, nonbond and polarization flux, among others. These effects, though not as extensively studied, likely hold the key to achieving the rigorous reproduction of structural and energetic properties long sought in biomolecular simulations, and are surveyed here. In addition, the quality of training and validation observables are evaluated. The necessity of including an ample set of energetic and crystal observables is emphasized, and the inadequacy of free energy as a criterion for FF reliability discussed. Finally, in light of the results of applications of the two approaches to FF development, we propose a “recipe” of terms describing the physics of inter and intramolecular interactions whose inclusion in FFs would significantly improve our understanding of the energetics and dynamics of biomolecular systems resulting from molecular dynamics and other energy based simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Debiec et al. [58]

Fig. 2

Reproduced with permission from Huang et al. supplementary material [65]

Fig. 3

Reproduced with permission Graphical abstract. Schmollngruber et al. [149]

Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AG:

Arithmetic–geometric

Ala:

Alanine

AMBER:

Assisted model building with energy refinement

AMOEBA:

Atomic multipole optimized energetics for biomolecular applications

AUE:

Absoluter unsigned error

BCC:

Bond charge correction

BNS:

Ben Naim–Stillinger

C22:

CHARMM22

CASP:

Critical assessment of protein structure prediction

CFF:

Consistent force field

CHARMM:

Chemistry at HARvard Macromolecular Mechanics

CHELPG:

Charges from electrostatic potentials using a grid-based method

CHEQ:

Charge equilibration method

CMAP:

Grid based energy correction map

CNDO:

Complete neglect of differential overlap

COMPASS:

Condensed-phase optimized molecular potentials for atomistic simulation studies

CVFF:

Consistent valence force field

DFT:

Density functional theory

DMA:

Distributed multipole analysis

DZVP:

Valence double-zeta plus polarization

ECEPP:

Empirical conformational energy program for peptides

EHT:

Extended Hückel theory

ESP:

Electrostatic potential

EVB:

Empirical valence bond

FEP:

Free energy perturbation

FF:

Force field

FQ:

Fluctuating charges

FRET:

Forster resonance energy transfer

GAFF:

General AMBER force field

Gly:

Glycine

GROMOS:

GROningen MOlecular Simulation

hCatL:

human Cathepsin L

HF-SCF:

Hartree–Fock self-consistent-field

Hyp:

Hydroxyproline

IDP:

Intrinsically disordered protein

LCAO:

Linear combination of atomic orbitals

LJ:

Lennard-Jones

LP:

Oxygen lone pair

MC:

Monte Carlo

MCMS FF:

Momany, Carruthers, McGuire, and Scheraga force field

MCY:

Matsuoka–Clementi–Yoshimine

MD:

Molecular dynamics

MDDR:

MDL drug data report

MDL:

Molecular Design Limited

MEP:

Molecular electrostatic potentials

MM:

Molecular mechanics

MMFF:

Merck molecular force field

NMA:

N-methylacetamide

OPLS:

Optimized potential for liquid simulations

OPLS-AA:

OPLS all atom

OPLS-AA:

OPLS-AA/L OPLS all atom FF (L for LMP2)

PCILO:

Perturbative configuration interaction using localized orbitals

PDB:

Protein data base

PEFC:

Potential Energy Function Consortium (Biosym)

PMF:

Potential of mean force

POL3:

Polarizable water model (3)

PPII :

Polyproline II conformation

QCPE:

Quantum chemistry program exchange

QDF:

Quantum derivative fitting

QDP:

Charge dependent polarizability

QM:

Quantum mechanics

RESP:

Restrained electrostatic potential

RMS:

Root mean square

RMSD:

Root mean square deviation

RMSE:

Root mean square error

SAMPL:

Statistical assessment of the modeling of proteins and ligands (competition)

SAXS:

Small angle X-ray scattering

SCF-LCAO-MO:

Self-consistent field-linear combination of atomic–molecular orbital

SDFF:

Spectroscopically determined force fields (for macromolecules)

SIBFA:

Sum of interactions between fragments ab initio (computed)

SPC:

Simple point charge (water model)

ST2:

Four point water model replacing Ben-Naim Stillinger (BNS) model

STO:

Slater-type atomic orbitals

SWM4-NDP:

Simple water model with negative Drude polarization

TIP3P:

Transferable intermolecular potential three point

TTBM:

Tri-tert-butylmethane

TZVP:

Triple-zeta plus valence polarization (basis set)

UB:

Urey–Bradley

UBFF:

Urey Bradley force field

VDW:

Van der Waals

VFF:

Valence force field

WH:

Waldman–Hagler

References

  1. Dauber P, Hagler AT (2018) On the evolution of force fields for molecular mechanics and dynamics studies of biomolecular systems and drug design: where have we been, where are we now, where do we need to go and how do we get there? J Comput Aided Mol Des. https://doi.org/10.1007/s10822-018-0111-4

    Article  Google Scholar 

  2. Westheimer FH (1956) Steric effects in organic chemistry. Wiley, New Jersey

    Google Scholar 

  3. Allinger NL (1959) Conformational analysis. III application to some medium ring compounds. J Am Chem Soc 81:5727–5733

    Article  CAS  Google Scholar 

  4. Hendrickson JB (1961) Molecular geometry I. Machine computation of the common rings. J Am Chem Soc 83:4537–4547

    Article  CAS  Google Scholar 

  5. Wiberg KB (1965) A scheme for strain energy minimization. Application to the cycloalkanes. J Am Chem Soc 87:1070–1078

    Article  CAS  Google Scholar 

  6. Bixon M, Lifson S (1967) Potential functions and conformations in cycloalkanes. Tetrahedron 23:769–784

    Article  CAS  Google Scholar 

  7. Lifson S, Warshel A (1968) Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules. J Chem Phys 49:5116

    Article  CAS  Google Scholar 

  8. Lifson S (1973) Recent developments in consistent force field calulations. In: G. Sadron (ed) Dynamic aspects of conformations change in biological macromolecules. Springer, Dordrecht pp 421–430

    Chapter  Google Scholar 

  9. Allinger NL, Miller MA, Vancatledge FA, Hirsch JA (1967) Conformational analysis. LVII. The calculation of the conformational structures of hydrocarbons by the Westheimer–Hendrickson–Wiberg method. J Am Chem Soc 89:4345–4357

    Article  CAS  Google Scholar 

  10. Allinger NL, Tribble MT, Miller MA, Wertz DH (1971) Conformational analysis. LXIX. An improved calculations of the structures and energies of hydrocarbons. J Am Chem Soc 93:1637–1648

    Article  CAS  Google Scholar 

  11. Scott RA, Scheraga HA (1966) Conformational analysis of macromolecules. I. ethane, propane, n-butane, and n-pentane. Biopolymers 4:237–238

    Article  CAS  Google Scholar 

  12. Scott RA, Scheraga HA (1966) Conformational analysis of macromolecules. III. Helical structures of polyglycine and poly-l-alanine. J Chem Phys 45:2091–2101

    Article  CAS  Google Scholar 

  13. Allinger NL (1976) Calculation of molecular structure and energy by force-field methods. Adv Phys Org Chem 13:1–82

    CAS  Google Scholar 

  14. Weiner PK, Kollman PA, AMBER (1981) Assisted model building with energy refinement. A general program for modeling molecules and their interactions. J Comput Chem 2:287–303

    Article  CAS  Google Scholar 

  15. Hagler ATT, Dauber P, Lifson S (1979) Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 3. The C=O⋯H–O hydrogen bond and the analysis of the energetics and packing of carboxylic acids. J Am Chem Soc 101:5131–5141

    Article  CAS  Google Scholar 

  16. Hagler AT, Huler E, Lifson S (1974) Energy functions for peptides and proteins. I. derivation of a consistent force field including the hydrogen bond from amide crystals. JAm Chem Soc 96:5319–5327

    Article  CAS  Google Scholar 

  17. Dauber P, Osguthorpe DJ, Hagler AT, Structure (1982) Energetics and dynamics of ligand binding to dihydrofolate-reductase. Biochem 10:312–318

    CAS  Google Scholar 

  18. Brooks BR et al (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  19. van Gunsteren WF, Berendsen HJC (1987) GROningen MOlecular simulation (GROMOS) library manual. BIOMOS, Nijenborgh. pp 1–229

    Google Scholar 

  20. Jorgensen WL, Tirado-Rives J (1988) The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666

    Article  CAS  PubMed  Google Scholar 

  21. Allinger NL (1977) Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc 99:8127–8134

    Article  CAS  Google Scholar 

  22. MacKerell AD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  PubMed  Google Scholar 

  23. Warshel A, Lifson S (1969) An empirical function for second neighbor interactions and its effect on vibrational modes and other properties of cyclo- and n-alkanes. Chem Phys Lett 4:255–256

    Article  CAS  Google Scholar 

  24. Hagler AT, Lifson S, Dauber P (1979) Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. a benchmark for the objective comparison of alternative force fields. J Am Chem Soc 101:5122–5130

    Article  CAS  Google Scholar 

  25. Dauber P, Hagler AT, Crystal Packing (1980) Hydrogen bonding, and the effect of crystal forces on molecular conformation. Acct Chem Res 13:105–112

    Article  CAS  Google Scholar 

  26. Allinger NL, Yuh YH, Jenn-Huei L (1989) Molecular mechanics. The MM3 force field for hydrocarbons. J Am Chem Soc 11:8551–8566

    Article  Google Scholar 

  27. Allinger NL, Chen K, Lii J (1996) An improved force field (MM4) for saturated hydrocarbons. J Comp Chem 17:642–668

    Article  CAS  Google Scholar 

  28. Maple JR, Dinur U, Hagler AT (1988) Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. Proc Nat Acad Sci USA 85:5350–5354

    Article  CAS  PubMed  Google Scholar 

  29. Waldman M, Hagler ATT (1993) New combining rules for rare-gas van der Waals parameters. J Comput Chem 14:1077–1084

    Article  CAS  Google Scholar 

  30. Lii J, Allinger NL (1991) The MM3 force field for amides, polypeptides and proteins. J Comput Chem 12:186–199

    Article  CAS  Google Scholar 

  31. Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) An all atom force field for simulations of proteins and nucleic acids. J Comput Chem 7:230–252

    Article  CAS  PubMed  Google Scholar 

  32. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS All-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  33. Horta BAC et al (2016) A GROMOS-compatible force field for small organic molecules in the condensed phase: The 2016H66 parameter set. J Chem Theory Comput. https://doi.org/10.1021/acs.jctc.6b00187

    Article  PubMed  Google Scholar 

  34. Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  35. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comp Chem 25:1157–1174

    Article  CAS  Google Scholar 

  36. Kaminski GA, Friesner RA, Tirado-rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  37. Cornell WD et al (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  38. MacKerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415

    Article  CAS  PubMed  Google Scholar 

  39. Buck M, Bouguet-Bonnet S, Pastor RW, MacKerell AD (2006) Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozyme. Biophys J 90:L36–L38

    Article  CAS  PubMed  Google Scholar 

  40. Mu Y, Kosov DS, Stock G (2003) Conformational dynamics of trialanine in water. 2. comparison of AMBER, CHARMM, GROMOS, and OPLS force fields to NMR and infrared experiments. J Phys Chem B 107:5064–5073

    Article  CAS  Google Scholar 

  41. Cardamone S, Hughes TJ, Popelier PL (2014) A. multipolar electrostatics. PhysChemChemPhys 16:10367–10387

    CAS  Google Scholar 

  42. Pierro M Di, Elber R (2013) Automated optimization of potential parameters. J Chem Theory Comput. https://doi.org/10.1021/ct400313n

    Article  Google Scholar 

  43. Stone AJ (2013) The theory of intermolecular forces. Oxford University Press, Oxford

    Book  Google Scholar 

  44. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New Jersey

    Google Scholar 

  45. Halgren, T (1996) Merck molecular force field. J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  46. Palmo K, Mirkin NG, Pietila: L, Krimm S (1993) Spectroscopically determined force fields for macromolecules. 1 n-alkane chains. Macromolecules 26:6831–6840

    Article  CAS  Google Scholar 

  47. Ren PY, Ponder JW (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B 107:5933–5947

    Article  CAS  Google Scholar 

  48. Lopes PEM, Roux B, MacKerell AD (2009) Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability. Theory and applications. Theor Chem Acc 124:11–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Khoruzhii O et al (2014) Protein modelling. Springer International Publishing, Basel pp 91–134. https://doi.org/10.1007/978-3-319-09976-7

    Book  Google Scholar 

  50. Shi Y, Ren P, Schnieders M, Piquemal J (2015) Polarizable force fields for biomolecular modeling. In: Parrill AL, Lipkowitz KB (eds) Reviews in computational chemistry. Wiley, New Jersey pp 51–86

    Google Scholar 

  51. Baker CM (2015) Polarizable force fields for molecular dynamics simulations of biomolecules. Wiley Interdiscip Rev Comput Mol Sci 5:241–254

    Article  CAS  Google Scholar 

  52. Cieplak P, Dupradeau F-Y, Duan Y, Wang J (2009) Polarization effects in molecular mechanical force fields. J Phys Condens Matter 21:333102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cisneros GA, Karttunen M, Ren P, Sagui C (2014) Classical electrostatics for biomolecular simulations. Chem Rev 114:779–814

    Article  CAS  PubMed  Google Scholar 

  54. Ji C, Mei Y (2014) Some practical approaches to treating electrostatic polarization of proteins. Acct Chem Res 47:2796–2803

    Google Scholar 

  55. Wang L-P et al (2017) Building a more predictive protein force field: a systematic and reproducible route to AMBER-FB15. J Phys Chem B 121:4023–4039

    Article  CAS  PubMed  Google Scholar 

  56. Cerutti DS, Swope WC, Rice JE, Case DA (2014) ff 14ipq: a self-consistent force field for condensed-phase simulations of proteins. J Chem Theory Comput 10:4515–4534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hornak V et al (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinf 65:712–725

    Article  CAS  Google Scholar 

  58. Debiec KT et al (2016) Further along the road less traveled: AMBER ff15ipq, an original protein force field built on a self-consistent physical model. J Chem Theory Comput 12:3926–3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lopes PEM, Guvench O, MacKerell AD (2015) Current status of protein force fields for molecular dynamics simulations. In: Kukol A (ed) Molecular modeling of proteins, methods in molecular biology. Springer, New York, pp 47–71

    Google Scholar 

  60. Takemura K, Kitao A (2012) Water model tuning for improved reproduction of rotational diffusion and NMR spectral density. J Phys Chem B 8:6279–6287

    Article  CAS  Google Scholar 

  61. Debiec KT, Gronenborn AM, Chong LT (2014) Evaluating the strength of salt bridges: a comparison of current biomolecular force fields. J Phys Chem B 118:6561–6569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Best RB, Buchete N-V, Hummer G (2008) Are current molecular dynamics force fields too helical? Biophys J 95:L07–L09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Song K, Stewart JM, Fesinmeyer RM, Andersen NH, Simmerling C (2008) Structural insights for designed alanine-rich helices: comparing NMR helicity measures and conformational ensembles from molecular dynamics simulation. Biopolymers 89:747–760

    Article  CAS  PubMed  Google Scholar 

  64. Wang J et al (2012) Development of polarizable models for molecular mechanical calculations. 3. polarizable water models conforming to thole polarization screening schemes. J Phys Chem B 116:7999–8008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang J et al (2017) Charmm36M: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73

    Article  CAS  PubMed  Google Scholar 

  66. Hagler AT (2015) Quantum derivative fitting and biomolecular force fields—functional form, coupling terms, charge flux, nonbond anharmonicity and individual dihedral potentials. J Chem Theory Comput 11:5555–5572

    Article  CAS  PubMed  Google Scholar 

  67. Desgranges C, Delhommelle J (2014) Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. III. Impact of combining rules on mixtures properties. J Chem Phys 140:104109

    Article  CAS  PubMed  Google Scholar 

  68. Wilson EBJ, Decius JC, Cross PC (1955) Molecular vibrations: the theory of infrared and raman vibrational spectra. McGraw-Bill, New York

    Google Scholar 

  69. Jorgensen WL (1981) Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J Am Chem Soc 103:335–340

    Article  CAS  Google Scholar 

  70. Wang L-P, Martinez TJ, Pande VS (2014) Building force fields: an automatic, systematic, and reproducible approach. J Phys Chem Lett 5:885–889

    Article  CAS  Google Scholar 

  71. Horn HW et al (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 120:9665–9678

    Article  CAS  PubMed  Google Scholar 

  72. Honda S et al (2008) Crystal structure of a ten-amino acid protein. J Am Chem Soc 130:15327–15331

    Article  CAS  PubMed  Google Scholar 

  73. MacKerell AD, Feig M, Brooks CL (2004) Improved treatment of the protein backbone in empirical force fields. J Am Chem Soc 126:698–699

    Article  CAS  PubMed  Google Scholar 

  74. Wang W, Ye W, Jiang C, Luo R, Chen H (2014) New force field on modeling intrinsically disordered proteins. Chem Biol Drug Des 84:253–269

    Article  CAS  PubMed  Google Scholar 

  75. Perez A, MacCallum JL, Brini E, Simmerling C, Dill KA (2015) Grid-based backbone correction to the ff12SB protein force field for implicit-solvent simulations. J Chem Theory Comput 11:4770–4779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Piana S, Lindorff-Larsen K, Shaw DE (2011) How robust are protein folding simulations with respect to force field parameterization? Biophys J 100:L47–L49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bernstein J, Hagler AT (1979) Polymorphism and isomorphism as tools to study the relationship between crystal forces and molecular-conformation. Mol Cryst Liq Cryst 50:223–233

    Article  CAS  Google Scholar 

  78. Cruz-Cabeza AJ, Bernstein J (2014) Conformational polymorphism. Chem Rev 114:2170–2191

    Article  CAS  PubMed  Google Scholar 

  79. Hagler AT, Moult J, Osguthorpe DJ (1980) Monte-Carlo simulation of the solvent structure in crystals of a hydrated cyclic peptide. Biopolymers 19:395–418

    Article  CAS  Google Scholar 

  80. Hall D, Pavitt N (1984) An appraisal of molecular force fields for the representation of polypeptides. J Comput Chem 5:441–450

    Article  CAS  Google Scholar 

  81. Kitson DH, Hagler AT (1988) Theoretical-studies of the structure and molecular-dynamics of a peptide crystal. Biochemistry 27:5246–5257

    Article  CAS  PubMed  Google Scholar 

  82. Kitson DH, Hagler AT (1988) Catalysis of a rotational transition in a peptide by crystal forces. Biochemistry 27:7176–7180

    Article  CAS  PubMed  Google Scholar 

  83. Hall D, Pavitt N (1991) Molecular packing and conformational analysis of cyclo- hexaglycyl hemihydrate. J Crystallogr Spectrosc Res 21:241–245

    Article  CAS  Google Scholar 

  84. Williams DE (2001) Improved intermolecular force field for molecules containing H, C, N, and O atoms, with application to nucleoside and peptide crystals. J Comp Chem 22:1154–1166

    Article  CAS  Google Scholar 

  85. Williams DE (1966) Nonbonbonded potential parameters derived from crystalline aromatic hydrocarbons. J Chem Phys 45:3770–3778

    Article  CAS  Google Scholar 

  86. Warshel A, Lifson S (1970) Consistent force field calculations. II. Crystal structures, sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpies of alkanes. J Chem Phys 53:582–594

    Article  CAS  Google Scholar 

  87. Berkovitch-Yellin Z, Ariel S, Leiserowitz L (1983) The comparative roles of the proton-acceptor properties of amide and carboxyl groups in influencing crystal packing patterns: doubly vs. singly hydrogen-bonded systems in N-acyl amino acids and in other amide-acid crystals. J Am Chem Soc 103:765–767

    Article  Google Scholar 

  88. Berkovitch-Yellin Z, Leiserowitz L (1984) The role played by C–H.O and C–H.N interactions in determining molecular packing and conformation. Acta Crystallogr B 40:159–165

    Article  Google Scholar 

  89. Lii JH, Allinger NL, Molecular (1989) Mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals’ potentials and crystal data for aliphatic and aromatic hydrocarbons. J Am Chem Soc 111:8576–8582

    Article  CAS  Google Scholar 

  90. Williams DE, Stouch TR (1993) Characterization of force fields for lipid molecules: Applications to crystal structures. J Comput Chem 14:1066–1076

    Article  CAS  Google Scholar 

  91. Ewig CS, Thacher TS, Hagler AT (1999) Derivation of class II force fields. 7. Nonbonded force field parameters for organic compounds. J Phys Chem B 103:6998–7014

    Article  CAS  Google Scholar 

  92. Donchev AG et al (2007) Assessment of performance of the general purpose polarizable force field QMPFF3 in condensed phase. J Comp Chem 29:1242–1249

    Article  CAS  Google Scholar 

  93. Price SL (2014) Predicting crystal structures of organic compounds. Chem Soc Rev 43:2098–2111

    Article  CAS  PubMed  Google Scholar 

  94. Gavezzotti A (2012) Computational studies of crystal structure and bonding. Top Curr Chem 315:1–32

    CAS  PubMed  Google Scholar 

  95. Gavezzotti A (2013) Equilibrium structure and dynamics of organic crystals by Monte Carlo simulation: critical assessment of force fields and comparison with static packing analysis. New J Chem 37:2110–2119

    Article  CAS  Google Scholar 

  96. Nyman J, Sheehan Pundyke O, Day GM (2016) Accurate force fields and methods for modelling organic molecular crystals at finite temperatures. Phys Chem Chem Phys 18:15828–15837

    Article  CAS  PubMed  Google Scholar 

  97. Reilly AM et al (2016) Report on the sixth blind test of organic crystal structure prediction methods. Acta Cryst B 72:439–459

    Article  CAS  Google Scholar 

  98. Cieplak P, Caldwell J, Kollman P (2001) Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and Chloroform/water partition coefficients of the nucleic acid bases. J Comput Chem 22:1048–1057

    Article  CAS  Google Scholar 

  99. Wang J et al (2011) Development of polarizable models for molecular mechanical calculations I: parameterization of atomic polarizability. J Phys Chem B 115:3091–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang J et al (2011) Development of polarizable models for molecular mechanical calculations II: induced dipole models significantly improve accuracy of intermolecular interaction energies. J Phys Chem B 115:3100–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang J et al (2012) Development of polarizable models for molecular mechanical calculations. 4. van der Waals parametrization. J Phys Chem B 116:7088–7101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Duan Y et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  PubMed  Google Scholar 

  103. Jämbeck JPM, Lyubartsev AP (2014) Update to the general amber force field for small solutes with an emphasis on free energies of hydration. J Phys Chem B 118:3793–3804

    Article  CAS  PubMed  Google Scholar 

  104. Sprenger KG, Jaeger VW, Pfaendtner J (2015) The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J Phys Chem B 119:5882–5895

    Article  CAS  PubMed  Google Scholar 

  105. Caldwell JW, Kollman PA (1995) Structure and properties of neat liquids using nonadditive molecular dynamics: water, methanol, and N-methylacetamide. J Phys Chem 99:6208–6219

    Article  CAS  Google Scholar 

  106. Wang J, Hou T (2011) Application of molecular dynamics simulations in molecular property prediction. 1. Density and heat of vaporization. J Chem Theory Comput 7:2151–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lifson S (1972) Protein–proptein interactions. Springer, New York pp 3–16

    Book  Google Scholar 

  108. Allinger NL, Chen K, Lii J (1996) An improved force field (MM4) for saturated hydrocarbons. J Comput Chem 17:642–668

    Article  CAS  Google Scholar 

  109. Beachy MD, Chasman D, Murphy RB, Halgren TA, Friesner RA (1997) Accurate ab initio quantum chemical determination of the relative energetics of peptide conformations and assessment of empirical force fields. J Am Chem Soc 119:5908–5920

    Article  CAS  Google Scholar 

  110. Patel S, MacKerell AD, Brooks CL (2004) CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. J Comput Chem 25:1504–1514

    Article  CAS  PubMed  Google Scholar 

  111. Vanommeslaeghe K, MacKerell AD (2015) CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. Biochim Biophys Acta 1850:861–871

    Article  CAS  PubMed  Google Scholar 

  112. Hatcher ER, Guvench O, MacKerell AD (2009) CHARMM additive all-atom force field for acyclic polyalcohols, acyclic carbohydrates, and inositol. J Chem Theory Comput 5:1315–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Guvench O et al (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543–2564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mijakovi M et al (2015) A comparison of force fields for ethanol–water mixtures. Mol Simul 699–712:699–712

    Article  CAS  Google Scholar 

  115. Guillot B (2002) A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liq 101:219–260

    Article  CAS  Google Scholar 

  116. Ahlstrom LS, Vorontsov II, Shi J, Miyashita O (2017) Effect of the crystal environment on side-chain conformational dynamics in cyanovirin-N investigated through crystal and solution molecular dynamics simulations. PLoS ONE 12:e0170337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Barone G, Della Gatta G, Ferro D, Piacente V (1990) Enthalpies and entropies of sublimation, vaporization and fusion of nine polyhydric alcohols. J Chem Soc Faraday Trans 86:75–79

    Article  CAS  Google Scholar 

  118. He X, Lopes PEM, MacKerell AD (2013) Polarizable empirical force field for acyclic polyalcohols based on the classical Drude oscillator. Biopolymers 99:724–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Patel DS, He X, Mackerell AD (2015) Polarizable empirical force field for hexopyranose monosaccharides based on the classical Drude oscillator. J Phys Chem B 119:637–652

    Article  CAS  PubMed  Google Scholar 

  120. Clark GNI, Cappa CD, Smith JD, Saykally RJ, Head-Gordon T (2010) The structure of ambient water. Mol Phys 108:1415–1433

    Article  CAS  Google Scholar 

  121. Freddolino PL, Park S, Roux B, Schulten K (2009) Force field bias in protein folding simulations. Biophys J 96:3772–3780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Best RB et al (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and Side-Chain χ1 and χ2 dihedral angles. J Chem Theory Comput 8:3257–3273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Swaminathan S, Craven BM, Mcmullan RK (1984) The crystal structure and molecular thermal motion of urea at 12, 60 and 123 K from neutron diffraction. Acta Cryst B 40:300–306

    Article  Google Scholar 

  124. Hagler AT, Lifson S (1974) Energy functions for peptides and proteins. II. The amide hydrogen bond and calculation of amide crystal properties. J Am Chem Soc 96:5327–5335

    Article  CAS  PubMed  Google Scholar 

  125. Zaitsau D, Kabo G, Kozyro A, Sevruk V (2003) The effect of the failure of isotropy of a gas in an effusion cell on the vapor pressure and enthalpy of sublimation for alkyl derivatives of carbamide. Thermochim Acta 406:17–28

    Article  CAS  Google Scholar 

  126. Piana S, Donchev AG, Robustelli P, Shaw DE (2015) Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J Phys Chem B 119:5113–5123

    Article  CAS  PubMed  Google Scholar 

  127. Rauscher S et al (2015) Structural ensembles of intrinsically disordered proteins depend strongly on force field: a comparison to experiment. J Chem Theory Comput 11:5513–5524

    Article  CAS  PubMed  Google Scholar 

  128. Lindorff-Larsen K et al (2012) Systematic validation of protein force fields against experimental data. PLoS ONE 7:e32131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li DW, Brüschweiler R (2010) NMR-based protein potentials. Angew Chemie 49:6778–6780

    Article  CAS  Google Scholar 

  130. Waldman M, Hagler AT (1993) New combining rules for rare gas van der waals parameters. J Comput Chem 14:1077–1084

    Article  CAS  Google Scholar 

  131. Song W, Rossky PJ, Maroncelli M (2003) Modeling alkane + perfluoroalkane interactions using all-atom potentials: failure of the usual combining rules. J Chem Phys 119:9145

    Article  CAS  Google Scholar 

  132. Nikitin A, Milchevskiy Y, Lyubartsev A (2015) AMBER-II: new combining rules and force field for perfluoroalkanes. J Phys Chem B 119:14563–14573

    Article  CAS  PubMed  Google Scholar 

  133. Best RB, Hummer G (2009) Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides. J Phys Chem B 113:9004–9015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yin J, Henriksen NM, Slochower DR, Gilson MK (2017) The SAMPL5 host–guest challenge: computing binding free energies and enthalpies from explicit solvent simulations by the attach-pull-release (APR) method. J Comput Aided Mol Des 31:133–145

    Article  CAS  PubMed  Google Scholar 

  135. Lindorff-Larsen K et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Kubelka J, Chiu TK, Davies DR, Eaton WA, Hofrichter J (2006) Sub-microsecond protein folding. J Mol Biol 359:546–553

    Article  CAS  PubMed  Google Scholar 

  137. Rohl CA, Baldwin RL (1997) Comparison of NH exchange and circular dichroism as techniques for measuring the parameters of the helix-coil transition in peptides. Biochemistry 36:8435–8442

    Article  CAS  PubMed  Google Scholar 

  138. Izadi S, Anandakrishnan R, Onufriev AV (2014) Building water models: a different approach. J Phys Chem Lett 5:3863–3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sullivan MR, Sokkalingam P, Nguyen T, Donahue JP, Gibb BC (2017) Binding of carboxylate and trimethylammonium salts to octa-acid and TEMOA deep-cavity cavitands. J Comput Aided Mol Des 31:21–28

    Article  CAS  PubMed  Google Scholar 

  140. Stouch TR (2012) The errors of our ways: taking account of error in computer-aided drug design to build confidence intervals for our next 25 years. J Comput Aided Mol Des 26:125–134

    Article  CAS  PubMed  Google Scholar 

  141. Chodera JD, Mobley DL (2013) Entropy-enthalpy compensation: Role and ramifications in biomolecular ligand recognition and design. Annu Rev Biophys 2013 42:121–142

    Article  CAS  Google Scholar 

  142. Ren P, Wu C, Ponder JW (2011) Polarizable atomic multipole-based molecular mechanics for organic molecules. J Chem Theory Comput 7:3143–3161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shaik MS, Liem SY, Popelier PLA (2010) Properties of liquid water from a systematic refinement of a high-rank multipolar electrostatic potential. J Chem Phys 132:174504

    Article  CAS  PubMed  Google Scholar 

  144. Morozov AV, Tsemekhman K, Baker D (2006) Electron density redistribution accounts for half the cooperativity of R helix formation. J Phys Chem B 110:4503–4505

    Article  CAS  PubMed  Google Scholar 

  145. Wallqvist A (1990) Incorporating intramolecular degrees of freedom in simulations of polarizable liquid water. Chem Phys 148:439–449

    Article  CAS  Google Scholar 

  146. Yin J et al (2017) Overview of the SAMPL5 host–guest challenge: are we doing better? J Comput Aided Mol Des 31:1–19

    Article  CAS  PubMed  Google Scholar 

  147. Lamoureux G, MacKerell AD, Roux B (2003) A simple polarizable model of water based on classical Drude oscillators. J Chem Phys 119:5185

    Article  CAS  Google Scholar 

  148. Shi Y et al (2013) Polarizable atomic multipole-based amoeba force field for proteins. J Chem Theory Comput 9:4046–4063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Schmollngruber M, Lesch V, Schrö C, Heuer A, Steinhauser O (2015) Comparing induced point-dipoles and Drude oscillators. Phys Chem Chem Phys 17:14297–14306

    Article  CAS  PubMed  Google Scholar 

  150. Lemkul JA, Huang J, Roux B, MacKerell AD (2016) An empirical polarizable force field based on the classical drude oscillator model: development history and recent applications. Chem Rev 116:4983–5013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bernal JD, Fowler RH (1933) A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J Chem Phys 1:515–548

    Article  CAS  Google Scholar 

  152. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  153. Lamoureux G, Harder E, Vorobyov IV, Roux B, MacKerell A (2005) A polarizable model of water for molecular dynamics simulations of biomolecules. Chem Phys Lett 418:2006

    Google Scholar 

  154. Corongiu G, Clementi E (1993) Molecular dynamics simulations with a flexible and polarizable potential: density of states for liquid water at different temperatures. J Chem Phys 98:4984–4990

    Article  CAS  Google Scholar 

  155. Dinur U, Hagler AT (1992) The role of nonbond and charge flux in hydrogen bond interactions. The effect on structural changes and spectral shifts in water dimer. J Chem Phys 97:9161–9172

    Article  CAS  Google Scholar 

  156. Kitano M, Kuchitsu K (1974) Molecular Structure Of Formamide As Studied By Gas Phase Electron Diffraction. Bull Chem Soc Jpn 47:67–72

    Article  CAS  Google Scholar 

  157. Vorobyov IV, Anisimov VM, MacKerell AD (2005) Polarizable empirical force field for alkanes based on the classical Drude oscillator model. J Phys Chem B 109:18988–18999

    Article  CAS  PubMed  Google Scholar 

  158. Steiner T (1996) C–H–O hydrogen bondiong in crystals. Cryst Rev 6:1–57

    Article  CAS  Google Scholar 

  159. Bernstein J (2013) ‘It Isn’t’. Cryst Growth Des 13:961–964

    Article  CAS  Google Scholar 

  160. Harder E, Anisimov VM, Whitfield T, MacKerell AD, Roux B (2008) Understanding the dielectric properties of liquid amides from a polarizable force field. J Phys Chem B 112:3509–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Maple JR, Hwang M, Stockfisch TP, Hagler AT (1994) Derivation of class II force fields. III. Characterization of a quantum force field for alkanes. Isr J Chem 34:195–231

    Article  CAS  Google Scholar 

  162. Klauda JB, Brooks BR, MacKerell AD, Venable RM, Pastor RW (2005) An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. J Phys Chem B 109:5300–5311

    Article  CAS  PubMed  Google Scholar 

  163. Shivakumar D, Harder E, Damm W, Friesner RA, Sherman W (2012) Improving the prediction of absolute solvation free energies using the next generation OPLS force field. | Chem Theory Comput 8:2553–2558

    Article  CAS  Google Scholar 

  164. Lopes PEM, Lamoureux G, Roux B, MacKerell AD (2007) Polarizable empirical force field for aromatic compounds based on the classical Drude oscillator. J Phys Chem B 111:2873–2885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hall D, Williams DE (1974) The effect of coulombic interactions on the calculated crystal structures of benzene at atmospheric and 25 kbar pressure. Acta Cryst A 31:56–58

    Article  Google Scholar 

  166. Dzyabchenko AV, Bazilevskii MV (1985) Theoretical structures of crystalline benzene II. Verification of atom–atom potentials. J Struct Chem 26:558–564

    Article  Google Scholar 

  167. Allinger NL, Lii J-H (1987) Benzene, aromatic rings, van der Waals molecules, and crystals of aromatic molecules in molecular mechanics (MM3). J Comput Chem 8:1146–1153

    Article  CAS  Google Scholar 

  168. van Eijck BP, Spek aL, Mooij WTM, Kroon J (1998) Hypothetical crystal structures of benzene at 0 and 30 kbar. Acta Crystallogr B 54:291–299

    Article  Google Scholar 

  169. Orabi EA, Lamoureux G (2012) Cation-π and π–π interactions in aqueous solution studied using polarizable potential models. J Chem Theory Comput 8:182–193

    Article  CAS  PubMed  Google Scholar 

  170. Nevins N, Chen K, Allinger NL (1996) Molecular mechanics (MM4) calculations on alkenes. J Comput Chem 17:669–694

    CAS  Google Scholar 

  171. Vorobyov I et al (2007) Additive and classical Drude polarizable force fields for linear and cyclic ethers. J Chem Theory Comput 3:1120–1133

    Article  CAS  PubMed  Google Scholar 

  172. Baker CM, MacKerell AD (2010) Polarizability rescaling and atom-based Thole scaling in the CHARMM Drude polarizable force field for ethers. J Mol Model 16:567–576

    Article  CAS  PubMed  Google Scholar 

  173. Anisimov VM, Vorobyov IV, Roux B, MacKerell AD (2007) Polarizable empirical force field for the primary and secondary alcohol series based on the classical Drude model. J Chem Theory Comput 3:1927–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lin B, Lopes PEM, Roux B, MacKerell AD (2013) Kirkwood-Buff analysis of aqueous N-methylacetamide and acetamide solutions modeled by the CHARMM additive and Drude polarizable force fields. J Chem Phys 139:08B624_1

    Google Scholar 

  175. Jorgensen WL, Swenson CJ (1985) Optimized intermolecular potential functions for amides and peptides. Structure and properties of liquid amides. J Am Chem Soc 107:569–578

    Article  CAS  Google Scholar 

  176. Wang J, Hou T (2011) Application of molecular dynamics simulations in molecular property prediction II: Diffusion coefficient. J Comput Chem 32:3505–3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Distasio RA, Jung Y, Head-Gordon MA (2005) Resolution-of-the-identity implementation of the local triatomics-in-molecules model for second-order Møller-Plesset perturbation theory with application to alanine tetrapeptide conformational energies. J Chem Theory Comput 1:862–876

    Article  CAS  PubMed  Google Scholar 

  178. Robertson MJ, Tirado-Rives J, Jorgensen WL (2015) Improved peptide and protein torsional energetics with the OPLS-AA force field. J Chem Theory Comput 11:3499–3509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lopes PEM et al (2013) Polarizable Force Field for Peptides and Proteins based on the Classical Drude Oscillator. J Chem Theory Comput 9:5430–5449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Li H et al (2015) Representation of ion—protein interactions using the Drude polarizable force-field. J Phys Chem B 8:9401–9416

    Article  CAS  Google Scholar 

  181. Ermer O, Lifson S (1973) Consistent force field calculations. III. Vibrations, conformations, and heats of hydrogenation of nonconjugated olefins. J Am Chem Soc 95:4121–4132

    Article  CAS  Google Scholar 

  182. Maple JR, Hwang MJ, Jalkanen KJ, Stockfisch TP, Hagler AT (1998) Derivation of class ii force fields: V. Quantum force field for amides, peptides, and related compounds. J Comput Chem 19:430–458

    Article  CAS  Google Scholar 

  183. Patel S, Brooks CL (2004) CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. J Comput Chem 25:1–15

    Article  CAS  PubMed  Google Scholar 

  184. Rick SW, Stuart SJ (2002) Potentials and algorithms for incorporating polarizability in computer simulations. Rev Comput Chem 18:89–146

    CAS  Google Scholar 

  185. Bauer Ba, Patel S (2012) Recent applications and developments of charge equilibration force fields for modeling dynamical charges in classical molecular dynamics simulations. Theor Chem Acc 131:1153

    Article  CAS  Google Scholar 

  186. Rablen PR, Lockman JW, Jorgensen WL (1998) Ab initio study of hydrogen-bonded complexes of small organic molecules with Water. J Phys Chem 102:3782–3797

    Article  CAS  Google Scholar 

  187. Rick SW, Stuart SJ, Berne BJ (1994) Dynamical fluctuating charge force fields: application to liquid water. J Chem Phys 101:6141–6156

    Article  CAS  Google Scholar 

  188. Zhong Y, Patel S (2010) Nonadditive empirical force fields for short-chain linear alcohols: methanol to butanol. Hydration free energetics and Kirkwood-Buff analysis using charge equilibration models. J Phys Chem B 114:11076–11092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Patel S, Brooks CL III (2005) Structure, thermodynamics, and liquid–vapor equilibrium of ethanol from molecular- dynamics simulations using nonadditive interactions. J Chem Phys 123:164502

    Article  CAS  PubMed  Google Scholar 

  190. Halgren TA (1992) The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. J Am Chem Soc 114:7827–7843

    Article  CAS  Google Scholar 

  191. Ponder JW et al (2010) Current status of the AMOEBA polarizable force field. J Phys Chem B 114:2549–2564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kumar R, Wang F-F, Jenness GR, Jordan K (2010) A second generation distributed point polarizable water model. J Chem Phys 132:14309

    Article  CAS  Google Scholar 

  193. Naserifar S, Brooks DJ, Goddard WA, Cvicek V (2017) Polarizable charge equilibration model for predicting accurate electrostatic interactions in molecules and solids. J Chem Phys 146:124117–124117

    Article  CAS  PubMed  Google Scholar 

  194. Santos LHR, Krawczuk A, Macchi P (2015) Distributed atomic polarizabilities of amino acids and their hydrogen-bonded aggregates. J Phys Chem A 119:3285–3298

    Article  CAS  PubMed  Google Scholar 

  195. Palmo K, Mannfors B, Mirkin NG, Krimm S (2006) Inclusion of charge and polarizability fluxes provides needed physical accuracy in molecular mechanics force fields. Chem Phys Lett 429:628–632

    Article  CAS  Google Scholar 

  196. Harder E et al (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12:281–296

    Article  CAS  PubMed  Google Scholar 

  197. Storer JW, Giesen DJ, Cramer CJ, Truhlar DG (1995) Class IV charge models: a new semiempirical approach in quantum chemistry. J Comput Aided Mol Des 9:87–110

    Article  CAS  PubMed  Google Scholar 

  198. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641

    Article  CAS  PubMed  Google Scholar 

  199. Distasio RA, Steele RP, Rhee YM, Shao Y, Head-Gordon M (2007) An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: application to alanine tetrapeptide conformational analysis. J Comput Chem 28:839–856

    Article  CAS  PubMed  Google Scholar 

  200. Graf J, Nguyen PH, Stock G, Schwalbe H (2007) Structure and dynamics of the homologous series of alanine peptides: a joint molecular dynamics/NMR study. J Am Chem Soc 129:1179–1189

    Article  CAS  PubMed  Google Scholar 

  201. Dodda LS, Vilseck JZ, Tirado-Rives J, Jorgensen WL (2017) 14*CM1A-LBCC: localized bond-charge corrected CM1A charges for condensed-phase simulations. J Phys Chem B 121:3864–3870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Choudhary A, Gandla D, Krow GR, Raines RT (2009) Nature of amide carbonyl–carbonyl interactions in proteins. J Am Chem Soc 131:7244–7246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wang L et al (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137:2695–2703

    Article  CAS  PubMed  Google Scholar 

  204. Maple JR et al (1994) Derivation of class II force fields. 1. Methodology and quantum force-field for the alkyl functional group and alkane molecules. J Comput Chem 15:162–182

    Article  CAS  Google Scholar 

  205. Palmo K, Mannfors B, Mirkin NG, Krimm S (2003) Potential energy functions: from consistent force fields to spectroscopically determined polarizable force fields. Biopolymers 68:383–394

    Article  CAS  PubMed  Google Scholar 

  206. Kolǎ M, Hobza P (2012) On extension of the current biomolecular empirical force field for the description of halogen bonds. J Chem Theory Comput 8:1325–1333

    Article  CAS  Google Scholar 

  207. Doig AJ, Baldwin RL (1995) N- and C-capping preferences for all 20 amino acids in alpha-helical peptides. Protein Sci 4:1325–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Shalongo W, Dugad L, Stellwagen’ E (1994) Distribution of helicity within the model peptide acetyl(AAQAA)3amide. J Am Chem Soc 116:8288–8293

    Article  CAS  Google Scholar 

  209. Lifson S, Hagler AT, Dauber P (1979) Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 1. Carboxylic acids, amides, and the C=O… H–hydrogen bonds. JAm Chem Soc 101:5111

    Article  CAS  Google Scholar 

  210. Dunitz JD, Gavezzotti A (2005) Molecular recognition in organic crystals: directed intermolecular bonds or nonlocalized bonding? Angew Chem Int Ed Engl 44:1766–1787

    Article  CAS  PubMed  Google Scholar 

  211. Kazantsev AV et al (2011) Successful prediction of a model pharmaceutical in the fifth blind test of crystal structure prediction. Int J Pharm 418:168–178

    Article  CAS  PubMed  Google Scholar 

  212. Kuhn B et al (2017) Prospective evaluation of free energy calculations for the prioritization of cathepsin L inhibitors. J Med Chem 60:2485–2497

    Article  CAS  PubMed  Google Scholar 

  213. Baliban SM et al (2017) Development of a glycoconjugate vaccine to prevent invasive Salmonella typhimurium infections in sub-Saharan Africa. PLoS Negl Trop Dis 11:1–27

    Article  CAS  Google Scholar 

  214. Robinson D et al (2016) Differential water thermodynamics determine PI3K-Beta/Delta selectivity for solvent-exposed ligand modi fi cations. J Chem Inf Model 6:886–894

    Article  CAS  Google Scholar 

  215. Dinur U, Hagler AT (1989) Determination of atomic point charges and point dipoles from the Cartesian derivatives of the molecular dipole moment and second moments, and from energy second derivatives of planar dimers II. Applications to model systems. J Chem Phys 91:2959–2970

    Article  CAS  Google Scholar 

  216. Dinur U, Hagler AT (1991) New approaches to empirical force fields. In: Lipkowitz KB, Boyd DB (eds) Reviews in Computational Chemistry. VCH Publisher2, New Jersey pp 99–164

    Google Scholar 

  217. Dinur U, Hagler AT (1995) Geometry-dependent atomic charges—methodology and application to alkanes, aldehydes, ketones, and amides. J Comput Chem 16:154–170

    Article  CAS  Google Scholar 

  218. Decius JC (1975) An effective atomic charge model for infrared intensities. J Mol Spec 362:348–362

    Article  Google Scholar 

  219. Person WB, Zerbi G (1982) Vibrational intensities in infrared and raman spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  220. Miwa Y, Machida K (1988) Molecular mechanics simulations of thermodynamic functions and infrared spectra of alkanes. J Am Chem Soc 110:5183–5189

    Article  CAS  Google Scholar 

  221. Gussoni M, Castiglioni C, Ramos MN, Rui M, Zerbi G (1990) Infrared intensities: from intensity parameters to an overall understanding of the spectrum. J Mol Struc 224:445–470

    Article  CAS  Google Scholar 

  222. Stern PS, Chorev M, Goodman M, Hagler AT (1983) Computer-simulation of the conformational properties of retro-inverso peptides. 2. Abinitio study, spatial electron-distribution, and population analysis of N-formylglycine methylamide, N-formyl N’-acetyldiaminomethane, and N-methylmalonamide. Biopolymers 22:1885–1900

    Article  CAS  PubMed  Google Scholar 

  223. Cieplak P, Kollman P (1991) On the use of electrostatic potential derived charges in molecular mechanics force-fields— relative solvation free-energy of Cis-N-methyl-acetamide and trans-N-methyl-acetamide. J Comput Chem 12:1232–1236

    Article  CAS  Google Scholar 

  224. Stouch TR, Williams DE (1992) Conformational dependence of electrostatic potential derived charges of a lipid headgroup: glycerylphosphorylcholine. J Comput Chem 13:622–632

    Article  CAS  Google Scholar 

  225. Reynolds CA, Essex JW, Richards WG (1992) Atomic charges for variable molecular conformations. J Am Chem Soc 114:9075–9079

    Article  CAS  Google Scholar 

  226. Dinur U (1990) ‘Flexible’ water molecules in external electrostatic potentials. J Phys Chem 94:5669–5671

    Article  CAS  Google Scholar 

  227. Dinur U, Hagler AT (1989) Direct evaluation of nonbonding interactions from ab initio calculations. J Am Chem Soc 111:5149–5151

    Article  CAS  Google Scholar 

  228. Wallqvist A, Ahlstrom P, Karlstroms GA (1990) New intermolecular energy calculation scheme: applications to potential surface and liquid properties of water. J Phys Chem 94:1649–1656

    Article  CAS  Google Scholar 

  229. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373

    Article  CAS  Google Scholar 

  230. Hagler AT, Leiserowitz L, Tuval M (1976) Experimental and theoretical studies of barrier to rotation about N-C-Alpha and C-Alpha-C’ bonds (Phi and Psi) in amides and peptides. J Am Chem Soc 98:4600–4612

    Article  CAS  PubMed  Google Scholar 

  231. Wei D, Guo H, Salahub DR (2001) Conformational dynamics of an alanine dipeptide analog: An ab initio molecular dynamics study. Phys Rev E 64:11907

    Article  CAS  Google Scholar 

  232. Palmo K, Mirkin NG, Krimm S (1998) Spectroscopically determined force fields for macromolecules. 2. saturated hydrocarbon chains. J Phys Chem A 102:6448–6456

    Article  CAS  Google Scholar 

  233. Pietilä L-O (1989) Molecular mechanics and force field calculations in vibrational spectroscopy. J Mol Struct 195:111–132

    Article  Google Scholar 

  234. Palmö K, Pietilä L-O, Krimm S (1991) Construction of molecular mechanics energy functions by mathematical transformation of ab initio force fields and structures. J Comput Chem 12:385–390

    Article  Google Scholar 

  235. Hagler AT, Huler E, Lifson S (1974) Energy functions for peptides and proteins. 1. Derivation of a consistent force-field including the hydrogen-bond from amide crystals. J Am Chem Soc 96:5319–5327

    Article  CAS  PubMed  Google Scholar 

  236. Mannfors B, Palmo K, Krimm S (2008) Spectroscopically determined force field for water dimer: Physically enhanced treatment of hydrogen bonding in molecular mechanics energy functions. J Phys Chem A 112:12667–12678

    Article  CAS  PubMed  Google Scholar 

  237. Mannfors B, Mirkin NG, Palmo K, Krimm S (2001) A polarizable electrostatic model of the N-methylacetamide dimer. J Comput Chem 22:1933–1943

    Article  CAS  Google Scholar 

  238. Mannfors B, Palmo K, Krimm S (2000) A new electrostatic model for molecular mechanics force fields. J Mol Struct 556:1–21

    Article  CAS  Google Scholar 

  239. Ewig CS, Waldman M, Maple JR (2002) Ab initio atomic polarizability tensors for organic molecules. J Phys Chem A 106:326–334

    Article  CAS  Google Scholar 

  240. Albaugh A et al (2016) Advanced potential energy surfaces for molecular simulation. J Phys Chem B. https://doi.org/10.1021/acs.jpcb.6b06414

    Article  PubMed  Google Scholar 

  241. Kratz EG et al (2016) LICHEM: a QM/MM program for simulations with multipolar and polarizable force fields. J Comput Chem 37:1019–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Loboda O, Ingrosso F, Ruiz-López MF, Reis H, Millot C (2016) Dipole and quadrupole polarizabilities of the water molecule as a function of geometry. J Comput Chem 37:2125–2132

    Article  CAS  PubMed  Google Scholar 

  243. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264

    Article  CAS  PubMed  Google Scholar 

  244. Honda K (2002) An effective potential function with enhanced charge-transfer-type interaction for hydrogen-bonding liquids. J Chem Phys 117:3558

    Article  CAS  Google Scholar 

  245. Řezác J, Hobza P (2016) Benchmark calculations of interaction energies in noncovalent complexes and their applications. Chem Rev 116:5038–5071

    Article  CAS  PubMed  Google Scholar 

  246. Mirkin NG, Krimm S (2014) Note: charge transfer in a hydrated peptide group is determined mainly by its intrinsic hydrogen-bond energetics. J Chem Phys 140:46101

    Article  CAS  Google Scholar 

  247. Ren P, Ponder JW (2002) Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations. J Comp Chem 23:1497–1506

    Article  CAS  Google Scholar 

  248. Dudek MJ, Ponder JW (1995) Accurate modeling of the intramolecular electrostatic energy of proteins. J Comput Chem 16:791–816

    Article  CAS  Google Scholar 

  249. Rasmussen TD, Ren P, Ponder JW, Jensen F (2007) Force field modeling of conformational energies: importance of multipole moments and intramolecular polarization. Int J Quantum Chem 107:1390–1395

    Article  CAS  Google Scholar 

  250. Rowlinson JS (1951) The lattice energy of ice and the second virial coefficient of water vapour. Trans Faraday Soc 47:120–129

    Article  CAS  Google Scholar 

  251. Berkovitch-yellin Z, Leiserowitz L (1980) The role of coulomb forces in the crystal packing of amides. A study based on experimental electron densities. J Am Chem Soc 102:7677–7690

    Article  CAS  Google Scholar 

  252. Stone AJ (1981) Distributed multipole analysis, or how to describe a molecular charge distribution. Chem Phys Lett 83:233–239

    Article  CAS  Google Scholar 

  253. Stone AJ, Price SL (1988) Some new ideas in the theory of intermolecular forces: anisotropic atom–atom. J Phys Chem 92:3325–3335

    Article  CAS  Google Scholar 

  254. Price SL (2000) Review in computational chemistry. Wiley, New Jersey pp 225–289

    Google Scholar 

  255. Gresh N, Claverie P, Pullman A (1984) Theoretical studies of molecular conformation. Derivation of an additive procedure for the computation of intramolecular interaction energies. Comparison with ab initio SCF computations. Theor Chim Acta 66:1–20

    Article  CAS  Google Scholar 

  256. Gresh N et al (1986) Intermolecular interactions: elaboration on an additive procedure including an explicit charge-transfer contribution. Int J Quantum Chem 24:101–118

    Article  Google Scholar 

  257. Piquemal J-P, Cisneros GA, Reinhardt P, Gresh N, Darden TA (2006) Towards a force field based on density fitting. J Chem Phys 124:104101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Zhang C, Lu C, Wang Q, Ponder JW, Ren P (2015) Polarizable multipole-based force field for dimethyl and trimethyl phosphate. J Chem Theory Comput 11:5326–5339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Thole BT (1981) Molecular polarization calculated with a modified dipole interaction. Chem Phys 59:341–350

    Article  CAS  Google Scholar 

  260. Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ (2010) The SAMPL2 blind prediction challenge: introduction and overview. J Comput Aided Mol Des 24:259–279

    Article  CAS  PubMed  Google Scholar 

  261. Gresh N, Kafafi S, Truchon J-F, Salahub DR (2004) Intramolecular interaction energies in model alanine and glycine tetrapeptides. Evaluation of anisotropy, polarization, and correlation effects. A parallel ab initio HF/MP2, DFT, and polarizable molecular mechanics study. J Comput Chem 25:823–834

    Article  CAS  PubMed  Google Scholar 

  262. Shi Y, Schnieders MJ, Ren P (2009) Trypsin-ligand binding free energy calculation with AMOEBA. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE. pp 2328–2331. https://doi.org/10.1109/IEMBS.2009.5335108

  263. Gresh N, Cisneros GA, Darden T, Piquemal J-P, Anisotropic (2007) Polarizable molecular mechanics studies of inter- and intramolecular interactions and ligand-macromolecule complexes. A bottom–up strategy. J Chem Theory Comput 3:1960–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. de Courcy B, Piquemal J-P, Garbay C, Gresh N (2010) Polarizable water molecules in ligand—macromolecule recognition. Impact on the relative affinities of competing pyrrolopyrimidine inhibitors for FAK kinase. J Am Chem Soc 132:3312–3320

    Article  CAS  PubMed  Google Scholar 

  265. Zhang J, Yang W, Piquemal JP, Ren P (2012) Modeling structural coordination and ligand binding in zinc proteins with a polarizable potential. J Chem Theory Comput 8:1314–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Avbelj F, Moult J, Kitson DH, James MNG, Hagler AT (1990) Molecular-dynamics study of the structure and dynamics of a protein molecule in a crystalline ionic environment, streptomyces-griseus protease-A. Biochemistry 29:8658–8676

    Article  CAS  PubMed  Google Scholar 

  267. Kitson DH et al (1993) On achieving better than 1-Angstrom accuracy in a simulation of a large protein—Streptomyces–Griseus protease-A. Proc Natl Acad Sci USA. 90:8920–8924

    Article  CAS  PubMed  Google Scholar 

  268. Cerutti DS, Freddolino PL, Duke RE Jr, Case DA (2010) Simulations of a protein crystal with a high resolution X-ray structure: evaluation of force fields and water models. J Phys Chem B 114:12811–12824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Cao L et al (2016) Validation of polarizable force field parameters for nucleic acids by inter-molecular interactions. Front Chem Sci Eng 10:203–212

    Article  CAS  Google Scholar 

  270. Muddana HS, Fenley AT, Mobley DL, Gilson MK (2014) The SAMPL4 host–guest blind prediction challenge: an overview. J Comput Aided Mol Des 28:305–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Bell DR et al (2016) Calculating binding free energies of host–guest systems using the AMOEBA polarizable force field. Phys Chem Chem Phys. https://doi.org/10.1039/C6CP02509A

    Article  PubMed  PubMed Central  Google Scholar 

  272. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  273. Koritsanszky TS, Coppens P (2001) Chemical applications of X-ray charge-density analysis. Chem Rev 101:1583–1627

    Article  CAS  PubMed  Google Scholar 

  274. Halgren TA (1996) Merck Molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comput Chem 17:520–552

    Article  CAS  Google Scholar 

  275. Bordner AJ, Cavasotto CN, Abagyan RA (2003) Direct derivation of van der Waals force field parameters from quantum mechanical interaction energies. J Phys Chem B 107:9601–9609

    Article  CAS  Google Scholar 

  276. Langley CH, Allinger NL (2002) Molecular mechanics (MM4) calculations on amides. J Phys Chem A 106:5638–5652

    Article  CAS  Google Scholar 

  277. Uzoh OG, Galek PTA, Price SL (2015) Analysis of the conformational profiles of fenamates shows route towards novel, higher accuracy, force-fields for pharmaceuticals. Phys Chem Chem Phys 17:7936–7948

    Article  CAS  PubMed  Google Scholar 

  278. Perez A, Morrone JA, Simmerling C, Dill K (2016) A. Advances in free-energy-based simulations of protein folding and ligand binding. Curr Opin Struct Biol 36:25–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Schroeder R, Lippincott ER (1957) Potential function model of hydrogen bonds. J Phys Chem 61:921

    Article  CAS  Google Scholar 

  280. Chidambaram R, Balasubramanian R, Ramachandran GN (1970) Potential functions for hydrogen bond interactions I. A modified lippincott-schroeder potential function for NH–O interaction between peptide groups. Biochim Biophys Acta 221:182–195

    Article  CAS  PubMed  Google Scholar 

  281. Momany FA, Carruthers LM, McGuire RF, Scheraga HA (1974) Intermolecular potentials from crystal data. III. Determination of empirical potentials and applications to the packing configurations and lattice energies in crystals of hydrocarbons, carboxylic acids, amines, and amides. J Phys Chem 78:1595–1620

    Article  CAS  Google Scholar 

  282. Ewig CS et al (2001) Derivation of class II force fields. VIII. Derivation of a general quantum mechanical force field for organic compounds. J Comput Chem 22:1782–1800

    Article  CAS  PubMed  Google Scholar 

  283. Cerutti DS, Swope WC, Rice JE, Case DA (2014) ff14ipq: A self-consistent force field for condensed-phase simulations of proteins. J Chem Theory Comput 10:4515–4534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Maier JA et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Demerdash O, Yap E-H, Head-Gordon T (2014) Advanced potential energy surfaces for condensed phase simulation. Annu Rev Phys Chem 65:149–174

    Article  CAS  PubMed  Google Scholar 

  286. Friesner RA (2005) Modeling polarization in proteins and protein-ligand complexes: methods and preliminary results. Adv Protein Chem 72:79–104

    Article  CAS  PubMed  Google Scholar 

  287. Mohamed NA, Essex JW, Bradshaw RT (2016) Evaluation of solvation free energies for small molecules with the AMOEBA polarizable force field. J Comp Chem 37:2749–2758

    Article  CAS  Google Scholar 

  288. Ren P, Wu C, Ponder JW (2012) Polarizable atomic multipole-based molecular mechanics for organic molecules. J Chem Theory Comput 7:3143–3161

    Article  CAS  Google Scholar 

  289. Dinur U (1991) Charge flux and electrostatlc forces in planar molecules. J Phys Chem 95:6201–6211

    Article  CAS  Google Scholar 

  290. Dinur U, Hagler AT (1990) A novel decomposition of torsional potentials into pairwise interactions—a study of energy 2nd derivatives. J Comput Chem 11:1234–1246

    Article  CAS  Google Scholar 

  291. Dinur U, Hagler AT (1994) On the functional representation of bond-energy functions. J Comput Chem 15:919–924

    Article  CAS  Google Scholar 

  292. Mannfors B, Sundius T, Palmo K, Pietila L-O, Krimm S (2000) Spectroscopically determined force fields for macromolecules. Part 3. Alkene chains. J Mol Struc 521:49–75

    Article  CAS  Google Scholar 

  293. Wang Q et al (2015) A general model for treating short-range electrostatic penetration in a molecular mechanics force field. J Chem Theory Comput 11:2609–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Narth C et al (2016) Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles. J Comp Chem 37:494–505

    Article  CAS  Google Scholar 

  295. Rackers JA et al (2017) An optimized charge penetration model for use with the AMOEBA force field. Phys Chem Chem Phys 19:276–291

    Article  CAS  Google Scholar 

  296. Qi R, Wang Q, Ren P (2016) General van der Waals potential for common organic molecules. Bioorg Med Chem. https://doi.org/10.1016/j.bmc.2016.07.062

    Article  PubMed  PubMed Central  Google Scholar 

  297. Ren P, Wu C, Ponder JA (2012) Polarizable atomic multipole-based molecular mechanics for organic molecules. J Chem Theory Comput 7:3143–3161

    Article  CAS  Google Scholar 

  298. Galimberti D, Milani A, Castiglioni C (2013) Charge mobility in molecules: charge fluxes from second derivatives of the molecular dipole. J Chem Phys 138:164115

    Article  CAS  PubMed  Google Scholar 

  299. Tafipolsky M, Ansorg K (2016) Toward a physically motivated force field: hydrogen bond directionality from a symmetry-adapted perturbation theory perspective. J Chem Theory Comput 12:1267–1279

    Article  CAS  PubMed  Google Scholar 

  300. Eramian H, Tian Y-H, Fox Z, Beneberu HZ, Kertesz M, Se S (2013) On the anisotropy of van der Waals atomic radii of O. F, Cl, Br, and I. J Phys Chem A 117:14184–14190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. Mike Gilson, Sam Krimm, Alex MacKerell, Benoit Roux, Pengyu Ren, Jay Ponder, Ken Dill, Kim Palmo, Pnina Dauber-Osguthorpe, for reading parts of manuscript and helpful discussions and Dr. Ruth Sharon for reading and help with editing. We also thank Eitan Hagler for help with the figures, Martha Obermeier for help with proofing and referee 1 who made many helpful suggestions including the addition of the effect of methodology in FF derivation. Special thanks to the editor, Dr. Terry Stouch for his invitation to write this perspective, encouragement, and endless patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Hagler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagler, A.T. Force field development phase II: Relaxation of physics-based criteria… or inclusion of more rigorous physics into the representation of molecular energetics. J Comput Aided Mol Des 33, 205–264 (2019). https://doi.org/10.1007/s10822-018-0134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0134-x

Keywords

Navigation