Skip to main content
Log in

VSP—a quantum-electronic simulation framework

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The Vienna Schrödinger-Poisson (VSP) simulation framework for quantum-electronic engineering applications is presented. It is an extensive software tool that includes models for band structure calculation, self-consistent carrier concentrations including strain, mobility, and transport in transistors and heterostructure devices. The basic physical models are described. Through flexible combination of basic models sophisticated simulation setups for particular problems are feasible. The numerical tools, methods and libraries are presented. A layered software design allows VSP’s existing components such as models and solvers to be combined in a multitude of ways, and new components to be added easily. The design principles of the software are explained. Software abstraction is divided into the data, modeling and algebraic level resulting in a flexible physical modeling tool. The simulator’s capabilities are demonstrated with real-world simulation examples of tri-gate and nanoscale planar transistors, quantum dots, resonant tunneling diodes, and quantum cascade detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Kannan, G., Vasileska, D.: In: 14th International Workshop on Computational Electronics (IWCE), pp. 1–4 (2010). doi:10.1109/IWCE.2010.5677977

    Google Scholar 

  2. Tan, I.H., Snider, G.L., Chang, L.D., Hu, E.L.: J. Appl. Phys. 68(8), 4071 (1990). http://link.aip.org/link/?JAP/68/4071/1

    Article  Google Scholar 

  3. Snider, G.L.: http://www.nd.edu/~gsnider/ (2013)

  4. Birner, S., Zibold, T., Andlauer, T., Kubis, T., Sabathil, M., Trellakis, A., Vogl, P.: IEEE Trans. Electron Devices 54(9), 2137 (2007). doi:10.1109/TED.2007.902871

    Article  Google Scholar 

  5. Trellakis, A., Zibold, T., Andlauer, T., Birner, S., Smith, R., Morschl, R., Vogl, P.: J. Comput. Electron. 5, 285 (2006). doi:10.1007/s10825-006-0005-x

    Article  Google Scholar 

  6. Steiger, S.: NEMO 5 User Manual. NCN Purdue Univ., Purdue

  7. Steiger, S., Povolotskyi, M., Park, H.-H., Kubis, T., Klimeck, G.: IEEE Trans. Nanotechnol. 10(6), 1464 (2011). doi:10.1109/TNANO.2011.2166164

    Article  Google Scholar 

  8. Auf der Maur, M., Penazzi, G., Romano, G., Sacconi, F., Pecchia, A., Di Carlo, A.: IEEE Trans. Electron Devices 58(5), 1425 (2011). doi:10.1109/TED.2011.2114666

    Article  Google Scholar 

  9. Auf der Maur, M., Sacconi, F., Penazzi, G., Romano, G., Povolotskyi, M., Pecchia, A., Di Carlo, A.: J. Comput. Electron. 9, 262 (2010). doi:10.1007/s10825-010-0331-x

    Article  Google Scholar 

  10. Steiger, S., Veprek, R., Witzigmann, B.: Opt. Quantum Electron. 41, 551 (2009). doi:10.1007/s11082-010-9360-8

    Article  Google Scholar 

  11. Veprek, R.G.: Computational modeling of semiconductor nanostructures for optoelectronics. Ph.D. thesis, ETH, Zürich (2009)

  12. SILVACO, Inc., ATLAS User’s Manual

  13. Sentaurus Device: http://www.synopsys.com

  14. Karner, M., Gehring, A., Holzer, S., Pourfath, M., Wagner, M., Goes, W., Vasicek, M., Baumgartner, O., Kernstock, C., Schnass, K., Zeiler, G., Grasser, T., Kosina, H., Selberherr, S.: J. Comput. Electron. 6(1), 179 (2007). doi:10.1007/s10825-006-0077-7

    Article  Google Scholar 

  15. Stanojevic, Z., Kosina, H.: In: IWCE, pp. 93–94 (2013)

    Google Scholar 

  16. Klima, R., Grasser, T., Selberherr, S., Wien, T.: In: 15th European Simulation Multiconference, pp. 161–165 (2001)

    Google Scholar 

  17. Avila, L.S., Barre, S., Blue, R., Geveci, B., Henderson, A., Hoffman, W.A., King, B., Law, C.C., Martin, K.M., Schroeder, W.J.: The VTK User’s Guide. Kitware, New York (2010)

    Google Scholar 

  18. Knuth, D.E.: Comput. J. 27(2), 97 (1984)

    Article  MATH  Google Scholar 

  19. OASIS Darwin Information Typing Architecture (DITA): Version 1.2 Specification (2010). http://docs.oasis-open.org/dita/v1.2/spec/DITA1.2-spec.html

  20. Fischer, C.: Bauelementsimulation in einer computergestützten Entwurfsumgebung. Ph.D. thesis, Technische Universität Wien (1994)

  21. Institute for Microelectronics and Global TCAD Solutions GmbH: Minimos-NT User Manual. http://www.globaltcad.com/en/products/minimos-nt.html

  22. Karner, M.: Multi-dimensional simulation of closed quantum systems. Master’s thesis, Technische Universität Wien (2004)

  23. Trellakis, A., Galick, A.T., Pacelli, A., Ravaioli, U.: J. Appl. Phys. 81(12), 7880 (1997). doi:10.1063/1.365396. http://link.aip.org/link/?JAP/81/7880/1

    Article  Google Scholar 

  24. Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: J. Appl. Phys. 81(12), 7845 (1997)

    Article  Google Scholar 

  25. Bowen, R.C., Klimeck, G., Lake, R.K., Frensley, W.R., Moise, T.: J. Appl. Phys. 81(7), 3207 (1997)

    Article  Google Scholar 

  26. Cresti, A., Farchioni, R., Grosso, G., Pastori Parravicini, G.: Phys. Rev. B 68, 075306 (2003)

    Article  Google Scholar 

  27. Pourfath, M., Kosina, H., Selberherr, S.: J. Comput. Electron. 5, 155 (2006)

    Article  Google Scholar 

  28. Svizhenko, A., Anantram, M.P., Govindan, T.R., Biegel, B., Venugopal, R.: J. Appl. Phys. 91(4), 2343 (2002)

    Article  Google Scholar 

  29. John, D., Castro, L., Pereira, P., Pulfrey, D.: In: Nanotech, vol. 3, pp. 65–68 (2004)

    Google Scholar 

  30. Baumgartner, O., Karner, M., Holzer, S., Pourfath, M., Grasser, T., Kosina, H.: In: Proceedings of the 2007 NSTI Nanotechnology Conference, vol. 3, pp. 145–148 (2007)

    Google Scholar 

  31. Ikonić, Z.: In: Harrison, P. (ed.) Quantum Wells, Wires and Dots, pp. 345–369. Wiley Interscience, New York (2005)

    Google Scholar 

  32. Baumgartner, O., Karner, M., Sverdlov, V., Kosina, H.: In: 13th International Workshop on Computational Electronics (IWCE), pp. 53–56 (2009). doi:10.1109/IWCE.2009.5091131

    Google Scholar 

  33. Luttinger, J.M., Kohn, W.: Phys. Rev. 97(4), 869 (1955). http://link.aps.org/abstract/PR/v97/p869

    Article  MATH  Google Scholar 

  34. Baumgartner, O., Karner, M., Sverdlov, V., Kosina, H.: Solid-State Electron. 54(2), 143 (2010). doi:10.1016/j.sse.2009.12.010. http://www.sciencedirect.com/science/article/pii/S0038110109003530. Selected Full-Length Extended Papers from the EUROSOI 2009 Conference

    Article  Google Scholar 

  35. Stanojevic, Z., Baumgartner, O., Sverdlov, V., Kosina, H.: In: Proceedings of the 14th International Workshop on Computational Electronics (IWCE), pp. 5–8 (2010). doi:10.1109/IWCE.2010.5677927

    Google Scholar 

  36. Stanojevic, Z., Sverdlov, V., Baumgartner, O., Kosina, H.: Solid-State Electron. 70(0), 73 (2012). doi:10.1016/j.sse.2011.11.022. http://www.sciencedirect.com/science/article/pii/S0038110111004187

    Article  Google Scholar 

  37. Hensel, J.C., Hasegawa, H., Nakayama, M.: Phys. Rev. 138(1A), A225 (1965). http://link.aps.org/abstract/PR/v138/pA225

    Article  Google Scholar 

  38. Baumgartner, O., Stanojevic, Z., Kosina, H.: In: Proceedings of the 16th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 91–94 (2011)

    Google Scholar 

  39. Sirtori, C., Capasso, F., Faist, J., Scandolo, S.: Phys. Rev. B 50(12), 8663 (1994). http://link.aps.org/abstract/PRB/v50/p8663

    Article  Google Scholar 

  40. Bahder, T.B.: Phys. Rev. B 41(17), 11992 (1990). http://link.aps.org/abstract/PRB/v41/p11992

    Article  Google Scholar 

  41. Kriechbaum, M., Ambrosch, K.E., Fantner, E.J., Clemens, H., Bauer, G.: Phys. Rev. B 30, 3394 (1984). doi:10.1103/PhysRevB.30.3394

    Article  Google Scholar 

  42. Iotti, R.C., Rossi, F.: Phys. Rev. Lett. 87(14), 146603 (2001). http://link.aps.org/abstract/PRL/v87/e146603

    Article  Google Scholar 

  43. Jirauschek, C., Scarpa, G., Lugli, P., Vitiello, M.S., Scamarcio, G.: J. Appl. Phys. 101(8), 086109 (2007). doi:10.1063/1.2719683. http://link.aip.org/link/?JAP/101/086109/1

    Article  Google Scholar 

  44. Milovanovic, G., Kosina, H.: J. Comput. Electron. 9, 211 (2010). doi:10.1007/s10825-010-0325-8

    Article  Google Scholar 

  45. Iotti, R.C., Ciancio, E., Rossi, F.: Phys. Rev. B 72(12), 125347 (2005). doi:10.1103/PhysRevB.72.125347

    Article  Google Scholar 

  46. Baumgartner, O., Stanojevic, Z., Kosina, H.: In: Sabelfeld, K.K., Dimov, I. (eds.) Monte Carlo Methods and Applications. De Gruyter Proceedings in Mathematics, pp. 59–67. De Gruyter, Berlin (2012), Chap. 7

    Google Scholar 

  47. Stanojevic, Z., Karner, M., Schnass, K., Kernstock, C., Baumgartner, O., Kosina, H.: In: Proceedings of the 16th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 143–146 (2011)

    Google Scholar 

  48. Kramer, K.M., Hitchon, W.N.G.: Semiconductor Devices. Prentice Hall, New York (1997)

    Google Scholar 

  49. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston (1996)

    MATH  Google Scholar 

  50. Li, X.S.: ACM Trans. Math. Softw. 31(3), 302 (2005)

    Article  MATH  Google Scholar 

  51. Schenk, O., Bollhöfer, M., Römer, R.: SIAM Rev. 50(1), 91 (2008). doi:10.1137/070707002

    Article  MathSciNet  MATH  Google Scholar 

  52. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Google Scholar 

  53. Björck, A., Pereyra, V.: Math. Comput. 24(112), 893 (1970). doi:10.2307/2004623

    Article  Google Scholar 

  54. Fejér, L.: Math. Z. 37, 287 (1933)

    Article  MathSciNet  Google Scholar 

  55. Clenshaw, C.W., Curtis, A.R.: Numer. Math. 2, 197 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  56. Waldvogel, J.: BIT 46, 195 (2006). doi:10.1007/s10543-006-0045-4

    Article  MathSciNet  MATH  Google Scholar 

  57. Espelid, T.: BIT 43(2), 319 (2003). http://dx.doi.org/10.1023/A:1026087703168

    Article  MathSciNet  MATH  Google Scholar 

  58. GTS Framework: http://www.globaltcad.com/en/products/gts-framework.html

  59. Auth, C., Allen, C., Blattner, A., Bergstrom, D., Brazier, M., Bost, M., Buehler, M., Chikarmane, V., Ghani, T., Glassman, T., Grover, R., Han, W., Hanken, D., Hattendorf, M., Hentges, P., Heussner, R., Hicks, J., Ingerly, D., Jain, P., Jaloviar, S., James, R., Jones, D., Jopling, J., Joshi, S., Kenyon, C., Liu, H., McFadden, R., Mcintyre, B., Neirynck, J., Parker, C., Pipes, L., Post, I., Pradhan, S., Prince, M., Ramey, S., Reynolds, T., Roesler, J., Sandford, J., Seiple, J., Smith, P., Thomas, C., Towner, D., Troeger, T., Weber, C., Yashar, P., Zawadzki, K., Mistry, K.: In: VLSIT, pp. 131–132 (2012). doi:10.1109/VLSIT.2012.6242496

    Google Scholar 

  60. Stanojevic, Z., Kosina, H.: In: Silicon Nanoelectronics Workshop, pp. 132–133 (2013)

    Google Scholar 

  61. Stanojevic, Z., Kosina, H.: In: Intl. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD) (2013)

    Google Scholar 

  62. Prange, R.E., Nee, T.W.: Phys. Rev. 168, 779 (1968). doi:10.1103/PhysRev.168.779

    Article  Google Scholar 

  63. Jin, S., Fischetti, M.V., Tang, T.w.: J. Appl. Phys. 102(8), 083715 (2007). doi:10.1063/1.2802586

    Article  Google Scholar 

  64. Kang, Z.T., Arnold, B., Summers, C.J., Wagner, B.K.: Nanotechnology 17(17), 4477 (2006). http://stacks.iop.org/0957-4484/17/i=17/a=032

    Article  Google Scholar 

  65. Klimeck, G., Lake, R., Bowen, R.C., Frensley, W.R., Moise, T.S.: Appl. Phys. Lett. 67(17), 2539 (1995)

    Article  Google Scholar 

  66. Park, H.H., Jiang, Z., Akkala, A.G., Steiger, S., Povolotskyi, M., Kubis, T.C., Sellier, J.M.D., Tan, Y., Kim, S., Luisier, M., Agarwal, S., McLennan, M., Klimeck, G., Geng, J.: Resonant Tunneling Diode Simulation with NEGF (2008). doi:10.4231/D3DZ03144. https://nanohub.org/resources/5237

  67. Hofstetter, D., Beck, M., Faist, J.: Appl. Phys. Lett. 81(15), 2683 (2002). doi:10.1063/1.1512954. http://link.aip.org/link/?APL/81/2683/1

    Article  Google Scholar 

  68. Giorgetta, F., Baumann, E., Graf, M., Yang, Q., Manz, C., Kohler, K., Beere, H., Ritchie, D., Linfield, E., Davies, A., Fedoryshyn, Y., Jackel, H., Fischer, M., Faist, J., Hofstetter, D.: IEEE J. Quantum Electron. 45(8), 1039 (2009). doi:10.1109/JQE.2009.2017929

    Article  Google Scholar 

  69. Baumgartner, O., Stanojevic, Z., Kosina, H.: In: 16th International Workshop on Computational Electronics (IWCE), pp. 86–87 (2013)

    Google Scholar 

  70. MyGTS: www.globaltcad.com/mygts

  71. Vienna Schrödinger Poisson: http://www.globaltcad.com/vsp

Download references

Acknowledgements

This work has been supported by the Austrian Science Fund program F025 (IR-ON), and the Austrian Research Promotion Agency, project 838551 (NeGFQTS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oskar Baumgartner.

Additional information

The first two authors contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumgartner, O., Stanojevic, Z., Schnass, K. et al. VSP—a quantum-electronic simulation framework. J Comput Electron 12, 701–721 (2013). https://doi.org/10.1007/s10825-013-0535-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0535-y

Keywords

Navigation