Skip to main content
Log in

On the threshold voltage of nanoscale bulk nMOSFETs with [110]/(001) uniaxial stress and quantum effects

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Due to the large electron mobility gain cased by uniaxial stress along the [110] directions on (001) silicon substrate, in this paper, the impact of [110]/(001) uniaxial strain and quantum mechanical effects (QMEs) on the threshold voltage of strained-Silicon nMOSFETs is studied by developing a physically-based model. The impact of [110]/(001) stress on the band structure parameters such as density-of-state (DOS) in the conduction and valance band, band-gap and intrinsic carrier concentration is quantized first. Based on a modified threshold surface potential, the threshold voltage model is then proposed by solving the 2-D Poisson’s equation and also by taking short channel effects, quantum effects and other secondary effects into consideration. Our analytical results agree with both TCAD and experimental data. The threshold voltage with the stress along arbitrary orientation can be analyzed analogously. This model can also be used for the design of nanoscale strained-Si nMOSFETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. De Michielis, M., Esseni, D., Driussi, F.: Analytical models for the insight into the use of alternative channel materials in ballistic nano-MOSFETs. IEEE Trans. Electron Devices 54, 115–123 (2007)

    Article  Google Scholar 

  2. Baykan, M.O., Thompson, S.E., Nishida, T.: Strain effects on three-dimensional, two-dimensional, and one-dimensional silicon logic devices: predicting the future of strained silicon. J. Appl. Phys. 108, 093716 (2010)

    Article  Google Scholar 

  3. Rim, K., Hoyt, J.L., Gibbons, F.: Fabrication and analysis of deep submicron strained-Si nMOSFET’s. IEEE Trans. Electron Devices 47, 1406–1415 (2000)

    Article  Google Scholar 

  4. Mizuno, T., Sugiyama, N., Tezuka, T.: Strained-SOI technology for high-speed CMOS operation. In: International Symposium on VLSI Technology, System, and Application, pp. 1–2 (2006)

    Google Scholar 

  5. Thompson, S.E., Sun, G.Y., Choi, Y.S., Nishida, T.: Uniaxial-process-induced strained-Si: extending the CMOS roadmap. IEEE Trans. Electron Devices 53, 1010–1020 (2006)

    Article  Google Scholar 

  6. Uchida, K., Krishnamohan, T., Saraswat, K.C., Nishi, Y.: Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime. In: IEDM Techn. Dig., pp. 129–132 (2005)

    Google Scholar 

  7. Kumar, M.J., Venkataraman, V., Nawal, S.: A simple analytical threshold voltage model of nanoscale single-layer fully depleted strained-silicon-on-insulator MOSFETs. IEEE Trans. Electron Devices 53, 2500–2506 (2006)

    Article  Google Scholar 

  8. Zhang, W.M., Fossum, J.G.: On the threshold voltage of strained-Si–Si1−x Ge x MOSFETs. IEEE Trans. Electron Devices 52, 263–268 (2005)

    Article  Google Scholar 

  9. Lim, J., Thompson, S.E., Fossum, J.G.: Comparison of threshold-voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs. IEEE Electron Device Lett. 25, 731–733 (2006)

    Google Scholar 

  10. Esseni, D., Conzatti, F., De Michielis, M., Serra, N., Palestri, P., Selmi, L.: Semi-classical transport modelling of CMOS transistors with arbitrary crystal orientations and strain engineering. J. Comput. Electron. 8, 209–224 (2009)

    Article  Google Scholar 

  11. Dijkstra, J.E., Wenckebach, W.T.: Hole transport in strained Si. J. Appl. Phys. 81, 1259–1261 (1997)

    Article  Google Scholar 

  12. Dhar, S., Ungersbök, E., Kosina, S., Grasser, T., Selberherr, S.: Electron mobility model for 〈110〉 stressed silicon including strain-dependent mass. IEEE Trans. Nanotechnol. 6, 97–100 (2007)

    Article  Google Scholar 

  13. Fischetti, M.V., Laux, S.E.: Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234–2252 (1996)

    Article  Google Scholar 

  14. Xu, J.P., Li, Y.P., Lai, P.T., Chen, W.B.: A 2D threshold-voltage model for small MOSFET with quantum-mechanical effects. Microelectron. Reliab. 48, 23–28 (2007)

    Article  Google Scholar 

  15. Jayadeva, G.S., DasGupta, A.: Compact model of short-channel MOSFETs considering quantum mechanical effects. Solid-State Electron. 53, 649–657 (2009)

    Article  Google Scholar 

  16. Yau, L.D.: A simple theory to predict the threshold voltage of short-channel IGFETs. Solid-State Electron. 17, 1059–1063 (1974)

    Article  Google Scholar 

  17. Suzuki, K.: Short channel MOSFET model using a universal channel depletion width parameter. IEEE Trans. Electron Devices 47, 1202–1208 (2000)

    Article  Google Scholar 

  18. Ohkura, Y.: Quantum effects in Si n-MOS inversion layer at high substrate concentration. Solid-State Electron. 33, 1581 (1990)

    Article  Google Scholar 

  19. Liu, Z.H., Hu, C.M., Huang, J.H.: An analytical threshold voltage model of NMOS with hot-carrier induced interface charge effect. IEEE Trans. Electron Devices 40, 86–95 (2005)

    Article  Google Scholar 

  20. Liu, X.Y., Kang, J.F., Sun, L.: Threshold voltage model for MOSFETs with high-k gate dielectrics. IEEE Electron Device Lett. 23, 270–272 (2002)

    Article  Google Scholar 

  21. Zou, X., Xu, J.P., Li, C.X., Lai, P.T.: A threshold-voltage model of SiGe-channel pMOSFET without Si cap layer. Microelectron. Reliab. 47, 391–394 (2007)

    Article  Google Scholar 

  22. Mukhopadhyay, B., Biswas, A., Basu, P.K., Eneman, G.: Modelling of threshold voltage and subthreshold slope of strained-Si MOSFETs including quantum effects. Semicond. Sci. Technol. 23, 095017 (2008)

    Article  Google Scholar 

  23. Synopsys TCAD tools. Sentaurus process user’s manuals (2006)

  24. Yu, B., Wann, H.J., Nowak, E.D., Noda, K., Hu, C.: Short-channel effect improved by lateral channel-engineering in deep-submicronmeter MOSFET’s. IEEE Trans. Electron Devices 44, 627–633 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanyu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Zhang, H., Wang, W. et al. On the threshold voltage of nanoscale bulk nMOSFETs with [110]/(001) uniaxial stress and quantum effects. J Comput Electron 13, 439–448 (2014). https://doi.org/10.1007/s10825-013-0553-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0553-9

Keywords

Navigation