Skip to main content
Log in

A symmetric quantum-dot cellular automata design for 5-input majority gate

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

By the inevitable scaling down of the feature size of the MOS transistors which are deeper in nanoranges, the CMOS technology has encountered many critical challenges and problems such as very high leakage currents, reduced gate control, high power density, increased circuit noise sensitivity and very high lithography costs. Quantum-dot cellular automata (QCA) owing to its high device density, extremely low power consumption and very high switching speed could be a feasible competitive alternative. In this paper, a novel 5-input majority gate, an important fundamental building block in QCA circuits, is designed in a symmetric form. In addition to the majority gate, a SR latch, a SR gate and an efficient one bit QCA full adder are implemented employing the new 5-input majority gate. In order to verify the functionality of the proposed designs, QCADesigner tool is used. The results demonstrate that the proposed SR latch and full adder perform equally well or in many cases better than previous circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993). doi:10.1088/0957-4484/4/1/004

    Article  Google Scholar 

  2. Porod, W.: Quantum-dot devices and quantum-dot cellular automata. Int. J. Bifurcation Chaos 7, 2199–2218 (1997). doi:10.1016/S0016-0032(97)00041-0

    Article  MATH  Google Scholar 

  3. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85, 541–557 (1997). doi:10.1109/5.573740

    Article  Google Scholar 

  4. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994). doi:10.1063/1.356375

    Article  Google Scholar 

  5. Cho, H., Swartzlander, EarlE: Adder and multiplier design in quantum-dot cellular automata. Comput. IEEE Trans. 58, 721–727 (2009). doi:10.1109/TC.2009.21

    Article  MathSciNet  Google Scholar 

  6. Zhang, R., Walnut, K., Wang, W., Jullien, G.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3, 443–450 (2004). doi:10.1109/TNANO.2004.834177

    Article  Google Scholar 

  7. Roohi, A., Sayedsalehi, S., Khademolhosseini, H., Navi, K.: Design and evaluation of a reconfigurable fault tolerant quantum-dot cellular automata gate. J. Comput. Theor. Nanosci. 10, 380–388 (2013). doi:10.1166/jctn.2013.2708

    Article  Google Scholar 

  8. Kamrani, M., Khademolhosseini, H., Roohi, A., and Aloustanimirmahalleh, P.: A novel genetic algorithm based method for efficient QCA circuit design. In: Advances in Computer Science, Engineering & Applications, pp. 433–442. Springer, Berlin (2012) doi:10.1007/978-3-642-30157-5_43

  9. Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: Implementation of reversible logic design in nanoelectronics on basis of majority gates. In: Computer Architecture and Digital Systems (CADS), 16th CSI International Symposium on, IEEE, 2012. doi:10.1109/CADS.2012.6316410

  10. Roohi, A., Menbari, B., Shahbazi, E., Kamrani, M.: A genetic algorithm based logic optimization for majority gate-based QCA circuits in nanoelectronics. Quantum Matter 2, 219–224 (2013). doi:10.1166/qm.2013.1050

    Article  Google Scholar 

  11. Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13, 198–210 (2013). doi:10.1007/s10825-013-0500-9

    Article  Google Scholar 

  12. Lu, Y., Lent, C.S.: Theoretical study of molecular quantum-dot cellular automata. J. Comput. Electron. 4, 115–118 (2005). doi:10.1007/s10825-005-7120-y

    Article  Google Scholar 

  13. Rahimi Azghadi, M., Kavei, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full adder. J. Appl. Sci. 7, 3460–3468 (2007)

  14. Navi, K., Sayedsalehi, S., Farazkish, R., Rahimi Azghadi, M.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7, 1546–1553 (2010). doi:10.1166/jctn.2010.1517

    Article  Google Scholar 

  15. Navi, K., Farazkish, R., Sayedsalehi, S., Rahimi Azghadi, M.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41, 820–826 (2010). doi:10.1016/j.mejo.2010.07.003

    Article  Google Scholar 

  16. Akeela, R., Wagh, M.D.: A five-input majority gate in quantum-dot cellular automata. In: NSTI Nanotech, vol. 2, pp. 978–981. (2011)

  17. Toth, G.: Correlation and coherence in quantum-dot cellular automata. Ph.D. Thesis, University of Notre Dame, Notre Dame (2000)

  18. Schulhof, G., Walus, K., Jullien, G.A.: Simulation of random cell displacements in QCA. ACM J. Emerg. Technol. Comput. Syst. (JETC) 3, 2–16 (2007). doi:10.1145/1229175.1229177

    Article  Google Scholar 

  19. Teodosio, T., Sousa, L.: QCA-LG: A Tool for the Automatic Layout Generation of QCA Combinational Circuits, pp. 1–5. Norchip, IEEE, Lisbon (2007). doi:10.1109/NORCHP.2007.4481078

    Google Scholar 

  20. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and Simulation tool for quantum-dot cellular automata. Nanotechnol. IEEE Trans. 3, 26–31 (2004). doi:10.1109/TNANO.2003.820815

    Article  Google Scholar 

  21. Thapliyal, H., Ranganathan, N.: Reversible logic-based concurrently testable latches for molecular QCA. Nanotechnol. IEEE Trans. 9, 62–69 (2010). doi:10.1109/TNANO.2009.2025038

    Article  Google Scholar 

  22. Huang, J., Momenzadeh, M., Lombardi, F.: Design of sequential circuits by quantum-dot cellular automata. Microelectron. J. 38, 525–537 (2007). doi:10.1016/j.mejo.2007.03.013

    Article  Google Scholar 

  23. Dehkordi, M.A., Shamsabadi, A.S., Ghahfarokhi, B.S., Vafaei, A.: Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata. Microelectron. J. 42, 701–708 (2011). doi:10.1016/j.mejo.2011.02.006

    Article  Google Scholar 

  24. Gin, A., Tougaw, P.D., Williams, S.: An alternative geometry for quantum-dot cellular automata. J. Appl. Phys. 85, 8281–8286 (1999). doi:10.1063/1.370670

    Article  Google Scholar 

  25. Roohi, A., Khademolhosseini, H.: Quantum-dot cellular automata: computing in nanoscale. Rev. Theor. Sci. 2, 46–76 (2014). doi:10.1166/rits.2014.1014

    Article  Google Scholar 

  26. Momenzadeh, M., Jing, H., Tahoori, M.B., Lombardi, F.: Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation. Comput. Aided Des. Integr. Circuits Syst. IEEE Trans. 24, 1881–1893 (2005). doi:10.1109/TCAD.2005.852667

    Article  Google Scholar 

  27. QCADesigner Home Page. www.atips.ca/projects/qcadesigner

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Roohi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roohi, A., Khademolhosseini, H., Sayedsalehi, S. et al. A symmetric quantum-dot cellular automata design for 5-input majority gate. J Comput Electron 13, 701–708 (2014). https://doi.org/10.1007/s10825-014-0589-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0589-5

Keywords

Navigation