Skip to main content
Log in

Quantum drift-diffusion model for IMPATT devices

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Quantum correction is necessary on the classical drift-diffusion (CLDD) model to predict the accurate behavior of high frequency performance of ATT devices at frequencies greater than 200 GHz when the active layer of the device shrinks in the range of 150–350 nm. In the present work, a quantum drift-diffusion model for impact avalanche transit time (IMPATT) devices has been developed by incorporating appropriate quantum mechanical corrections based on density-gradient theory which macroscopically takes into account important quantum mechanical effects such as quantum confinement, quantum tunneling, etc. into the CLDD model. Quantum potentials (synonymous as Bohm potentials) have been incorporated in the current density equations as necessary quantum mechanical corrections for the analysis of millimeter-wave (mm-wave) and Terahertz (THz) IMPATT devices. It is observed that the large-signal (L-S) performance of the device is degraded due to the incorporation of quantum corrections into the model when the frequency of operation increases above 200 GHz; while the effect of quantum corrections are negligible for the devices operating at lower mm-wave frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Midford, T.A., Bernick, R.L.: Millimeter wave CW IMPATT diodes and oscillators. IEEE Trans. Microw. Theory Tech. 27(5), 483–492 (1979)

    Article  Google Scholar 

  2. Luy, J.F., Casel, A., Behr, W., Kasper, E.: A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans. Electron Devices 34(5), 1084–1089 (1987)

    Article  Google Scholar 

  3. Wollitzer, M., Buchler, J., Schafflr, F., Luy, J.F.: D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz. Electron. Lett. 32, 122–123 (1996)

    Article  Google Scholar 

  4. Fong, T.T., Kuno, H.J.: Millimeter-wave pulsed IMPATT sources. IEEE Trans. Micriw. Theory Tech. 27(5), 492–499 (1979)

    Article  Google Scholar 

  5. Acharyya, A., Banerjee, J.P.: Prospects of IMPATT Devices based on Wide Bandgap Semiconductors as Potential Terahertz Sources. Applied Nanoscience 4, 1–14 (2014)

  6. Acharyya, A., Chakraborty, J., Das, K., Datta, S., De, P., Banerjee, S., Banerjee, J.P.: Large-signal characterization of DDR silicon IMPATTs operating up to 0.5 THz. Int. J. Microw. Wirel. Technol. 5(5), 567–578 (2013)

    Article  Google Scholar 

  7. Acharyya, A., Chakraborty, J., Das, K., Datta, S., De, P., Banerjee, S., Banerjee, J.P.: Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime. J. Semicond. 34(10), 104003–104008 (2013)

    Article  Google Scholar 

  8. Sze, S.M., Ryder, R.M.: Microwave avalanche diodes. Proc. IEEE, Special Issue Microw. Semicond. Devices 59(8), 1140–1154 (1971)

    Google Scholar 

  9. Acharyya, A., Banerjee, S., Banerjee, J.P.: Influence of skin effect on the series resistance of millimeter-wave IMPATT devices. J. Comput. Electron. 12(3), 511–525 (2013)

    Article  Google Scholar 

  10. Acharyya, A., Datta, K., Ghosh, R., Sarkar, M., Sanyal, R., Banerjee, S., Banerjee, J.P.: Diamond based DDR IMPATTs: prospects and potentiality as millimeter-wave source at 94 GHz atmospheric window. Radioengineering 22(2), 624–631 (2013)

    Google Scholar 

  11. Acharyya, A., Banerjee, S., Banerjee, J.P.: A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-band Si IMPATTs from the electric field snap-shots. Int. J. Microw. Wirel. Technol. 5(1), 91–100 (2013)

  12. Acharyya, A., Banerjee, S., Banerjee, J.P.: Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. J. Semicond. 34(2), 024001–0240012 (2013)

  13. Acharyya, A., Banerjee, S., Banerjee, J.P.: Large-signal simulation of 94 GHz pulsed DDR silicon IMPATTs including the temperature transient effect. Radioengineering 21(4), 1218–1225 (2012)

    Google Scholar 

  14. Ancona, M.G., Tiersten, H.F.: Macroscopic physics of the silicon inversion layer. Phys. Rev. B 35, 7959–7965 (1987)

    Article  Google Scholar 

  15. Ancona, M.G., Yu, Z., Dutton, R.W., Voorde, P.J.V., Cao, M., Vook, D.: Density-gradient analysis of MOS tunneling. IEEE Trans. Electron Devices 47(12), 2310–2319 (2000)

    Article  Google Scholar 

  16. Ancona, M.G.: Density-gradient theory: a macroscopic approach to quantum confinement and tunneling in semiconductor devices. J. Comput. Electron. 10, 65–97 (2011)

    Article  Google Scholar 

  17. Grant, W.N.: Electron and hole ionization rates in epitaxial silicon. Solid State Electron. 16, 1189–1203 (1973)

    Article  MathSciNet  Google Scholar 

  18. Canali, C., Ottaviani, G., Quaranta, A.A.: Drift velocity of electrons and holes and associated anisotropic effects in silicon. J. Phys. Chem. Solids 32, 1707 (1971)

    Google Scholar 

  19. Zeghbroeck, B.V.: Principles of Semiconductor Devices. Colorado Press, Colorado (2011)

    Google Scholar 

  20. Electronic archive: new semiconductor materials, characteristics and properties. http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html (2013). Accessed 11 Jan 2013

  21. Falco, C.D., Gatti, E., Lacaita, A.L., Sacco, R.: Quantum-corrected drift-diffusion models for transport in semiconductor devices. J. Comput. Phys. 204(2), 533–561 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Elta, M.E.: The effect of mixed tunneling and avalanche breakdown on microwave transit-time diodes. Technical Report, Ph.D. dissertation, Electron Physics Laboratory, University of Michigan, Ann Arbor (1978)

  23. Kane, E.O.: Theory of tunneling. J. Appl. Phys. 32(1), 83–91 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  24. Acharyya, A., Mukherjee, M., Banerjee, J.P.: Effects of tunnelling current on mm-wave IMPATT devices. Int. J. Electron. (2014). in press

  25. Acharyya, A., Mukherjee, M., Banerjee, J.P.: Influence of tunnel current on DC and dynamic properties of silicon based terahertz IMPATT source. Terahertz Sci. Technol. 4(1), 26–41 (2011)

    Google Scholar 

  26. Dash, G.N., Pati, S.P.: A generalized simulation method for IMPATT mode operation and studies on the influence of tunnel current on IMPATT properties. Semicond. Sci. and Technol. 7, 222–230 (1992)

    Article  Google Scholar 

  27. Ancona, M.G.: Macroscopic description of quantum-mechanical tunneling. Phys. Rev. B 42, 1222–1223 (1990)

    Article  Google Scholar 

  28. Ancona, M.G.: Density-gradient analysis of field emission from metals. Phys. Rev. B 46, 4874–4883 (1992)

    Article  Google Scholar 

  29. Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 16(1), 64–77 (1969)

    Article  Google Scholar 

Download references

Acknowledgments

The senior most author, Professor (Dr.) J. P. Banerjee (same as J. P. Bandyopadhyay) is grateful to the University Grants Commission, India for supporting the research through the award of an Emeritus Fellowship in the Institute of Radio Physics and Electronics, University of Calcutta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritra Acharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharyya, A., Chatterjee, S., Goswami, J. et al. Quantum drift-diffusion model for IMPATT devices. J Comput Electron 13, 739–752 (2014). https://doi.org/10.1007/s10825-014-0595-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0595-7

Keywords

Navigation