Skip to main content
Log in

Linearization design method in class-F power amplifier using artificial neural network

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper represents the design of a class-F power amplifier (PA), its artificial neural network (ANN) model and a PA linearization method. The designed PA operates at 1.8 GHz with gain of 12 dB and 1dB output compression point (P1dB) of 36 dBm. The proposed ANN model is used to predict the output power of designed class-F PA as a function of input and DC power. This model utilizes the designed class-F PA as a block, which could be used in a desired linearization circuit. In addition, the power added efficiency (PAE) and the other specifications of a PA, related to power can be predicted using the proposed model. A simple feedforward technique is used to improve the linearity of designed PA. For verification, this linearization method is compared with presented neural network model simulations. The results show the improvement of P1dB from 36 to 41 dBm, which is predicted using the proposed model. Also, the PAE of the final linearized circuit PA is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Grebennekov, A.: RF and Microwave Power Amplifier Design. McGraw Hill, New York (2004)

    Google Scholar 

  2. Raab, F.H., Asbeck, P., Cripps, S., Kenington, P., Popovic, Z., Pothecary, N., Sevic, J., Sokal, N.: Power amplifiers and transmitters for RF and microwave. IEEE Trans. Microwave Theory Tech. 50(3), 814–826 (2002)

    Article  Google Scholar 

  3. Gao, S.: High efficiency class-F RF/microwave power amplifiers. IEEE Microwav. Mag. 7(1), 40–48 (2006)

    Article  Google Scholar 

  4. Zhu, A., Wren, M., Brazil, T.J.: An Efficient Volterra-Based Behavioral Model for Wideband RF Power Amplifiers. IEEE MTT-S International Microwave Symposium Digest, vol. 2. (2003)

  5. Ding, L., et al.: A robust digital baseband predistorter constructed using memory polynomials. IEEE Trans. Commun. 52(1), 159–165 (2004)

    Article  Google Scholar 

  6. Liu, W.: MOSFET Models for SPICE Simulation Including BSIM3v3 and BSIM4. Wiley, New York (2001)

    Google Scholar 

  7. Antonini, G., Orlandi, A.: Gradient evaluation for neural-networks-based electromagnetic optimization procedures. IEEE Trans. Microw. Theory Tech. 48(5), 874–876 (2000)

    Article  Google Scholar 

  8. Devabhaktuni, V.K., Zhang, Q.J.: Neural network training-driven adaptive sampling algorithm for microwave modeling. Proceedings of 30th European Microwave Conference, pp. 222–225. Paris, France (2000)

  9. Watson, P.M., Mah, M.Y., Liou, L.L.: Input variable space reduction using dimensional analysis for artificial neural network modeling. IEEE MTT-S Int Microwave Symposium Digest, pp. 269–272. Anaheim, CA (1999)

  10. Mkadem, F., Boumaiza, S.: Physically inspired neural network model for RF power amplifier behavioral modeling and digital predistortion. IEEE Trans. Microw. Theory Tech. 59(4), 913–923 (2011)

    Article  Google Scholar 

  11. Yuan, X.-H., Feng, Q.: Behavioral modeling of RF power amplifiers with memory effects using orthonormal hermite polynomial basis neural network. Prog. Electromagn. Res. C 34(1), 239–251 (2013)

    Article  Google Scholar 

  12. Li, M., et al.: Complex-Chebyshev functional link neural network behavioral model for broadband wireless power amplifiers. IEEE Trans. Microw. Theory Tech. 60(6), 1979–1989 (2012)

    Article  Google Scholar 

  13. Mkadem, F., et al.: Behavioral modeling and digital predistortion of power amplifiers with memory using two hidden layers artificial neural networks. IEEE MTT-S International Microwave Symposium Digest (MTT) (2010)

  14. Bahoura, M., Park, C.-W.: FPGA-implementation of an adaptive neural network for RF power amplifier modeling. 9th IEEE International New Circuits and Systems Conference (NEWCAS). IEEE, (2011)

  15. Lee, K.C., Gardner, P.: Neuro-fuzzy approach to adaptive digital predistortion. Electron. Lett. 40(3), 185–187 (2004)

    Article  Google Scholar 

  16. Zaabab, A.H., Zhang, Q.J., Nakhla, M.: Analysis and optimization of microwave circuits & devices using neural network models. IEEE MTT-S International Microwave Symposium Digest, pp. 393–396. San Diego (1994)

  17. Liu, T., Boumaiza, S., Ghannouchi, M.: Dynamic behavioral modeling of 3G power amplifiers using real-valued time-delay neural networks. IEEE Trans. Microw. Theory Tech. 52(3), 1025–1033 (2004)

    Article  Google Scholar 

  18. Isaksson, M., Wisell, D., Ronnow, D.: Wide-band dynamic modeling of power amplifiers using radial basis function neural networks. IEEE Trans. Microw. Theory Tech. 53(11), 3422–3428 (2005)

    Article  Google Scholar 

  19. Q.J. Zhang.: A neural network paradigm for microwave modeling, simulation and optimization. IEEE MTT-S International Microwave Symposium Workshop on Applications of ANN to Microwave Design, pp. 87–107. Denver, CO (1997)

  20. Kothapalli, G.: Artificial neural networks as aids in circuit design. Microelectron. J. 26(6), 569–578 (1995)

    Article  Google Scholar 

  21. Zaabab, A.H., Zhang, Q.J., Nakhla, M.: A neural network modeling approach to circuit optimization and statistical design. IEEE Trans. Microw. Theory Tech. 43(6), 1349–1358 (1995)

    Article  Google Scholar 

  22. Goasguen, S., Hammadi, S.M., El- Ghazaly, S.M.: A global modeling approach using artificial neural network. IEEE MTT-S International Microwave Symposium Digest, pp. 153–156. Anaheim, CA (1999)

  23. Fang, Y., Yagoub, M.C.E., Wang, F., Zhang, Q.J.: A new macromodeling approach for nonlinear microwave circuits based on recurrent neural networks. IEEE MTT-S International Microwave Symposium Digestive, pp. 883–886. Boston, MA (2000)

  24. Kim, J., Konstantinou, K.: Digital predistortion of wideband signals based on power amplifier model with memory. Electron. Lett. 37(23), 1417–1418 (2001)

    Article  Google Scholar 

  25. Jang, J.-S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  26. Zhai, J., Zhou, J., Zhang, L., Zhao, J., Hong, W.: The dynamic behavioral model of RF power amplifiers with the modified ANFIS. IEEE Trans. Microw. Theory Tech. 57(1), 27–35 (2009)

    Article  Google Scholar 

  27. Chopra, P.K., Chandrasekhar, M.G.: ANN modeling for design of a matched low noise pHEMT amplifier for mobile application. J. Comput. Electron. 12(4), 743–751 (2013)

    Article  Google Scholar 

  28. Caddemi, A., Donato, N., Xibilia, M.G.: Advanced simulation of semiconductor devices by artificial neural networks. J. Comput. Electron. 2(2–4), 301–307 (2003)

    Article  Google Scholar 

  29. Karimi, G., Sedaghat, S.B., Banitalebi, R.: Sedighe Babaei Sedaghat, and Roza Banitalebi.: Designing and modeling of ultra low voltage and ultra low power LNA using ANN and ANFIS for bluetooth applications. Neurocomputing 120(1), 504–508 (2013)

    Article  Google Scholar 

  30. Hayati, M., Lotfi, A.: Modeling of compact microstrip resonator using neural network: application to design of compact low-pass filter with sharp cut-off frequency. Microw. Opt. Technol. Lett. 53(6), 1323–1328 (2011)

    Article  Google Scholar 

  31. Rahmati, M.M., Abdipour, A., Mohammadi, A., Moradi, G.: An analytic approach for CDMA output of feedforward power amplifier. Analog Integr. Circuits Signal Process. 66(3), 349–361 (2011)

    Article  Google Scholar 

  32. Hayati, M., Roshani, S.: A broadband Doherty power amplifier with harmonic suppression. AEU Int. J. Electron. Commun. 68(5), 406–412 (2014)

    Article  Google Scholar 

  33. Su, D.K., McFarland, W.J.: An IC for linearizing RF power amplifiers using envelope elimination and restoration. IEEE Solid State Circuits 33(12), 2252–2258 (1998)

    Article  Google Scholar 

  34. Aust, M., et al.: A 94-GHz monolithic balanced power amplifier using 0.1-\(\mu \)m gate GaAs-based HEMT MMIC production process technology. IEEE Microw. Guided Wave Lett. 5(1), 12–14 (1995)

    Article  Google Scholar 

  35. Raab, F.H.: Class-F power amplifiers with maximally flat waveforms. IEEE Trans. Microw. Theory Tech. 45(11), 2007–2012 (1997)

    Article  Google Scholar 

  36. Negra, R., Fadhel, M., Ghannouchi, M., Bachtold, W.: Study and design optimization of multiharmonic transmission-line load networks for Class-E and Class-FK-band MMIC power amplifiers. IEEE Trans. Microw. Theory Tech. 55(6), 1390–1394 (2007)

  37. Kim, J., Fehri, B., Boumaiza, S., Wood, J.: Power efficiency and linearity enhancement using optimized asymmetrical Doherty power amplifiers. IEEE Trans. Microw. Theory Tech. 59(2), 425–434 (2011)

    Article  Google Scholar 

  38. Raab, F.H.: Class-F power amplifiers with maximally flat waveforms. IEEE Trans. Microw. Theory Tech. 45(11), 2007–2012 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Hayati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayati, M., Shama, F., Roshani, S. et al. Linearization design method in class-F power amplifier using artificial neural network. J Comput Electron 13, 943–949 (2014). https://doi.org/10.1007/s10825-014-0612-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0612-x

Keywords

Navigation