Skip to main content
Log in

Quantum corrected drift-diffusion model for terahertz IMPATTs based on different semiconductors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The authors have developed a quantum corrected drift-diffusion model for impact avalanche transit time (IMPATT) devices by coupling the density gradient model with the classical drift-diffusion model. A large-signal simulation technique has been developed by incorporating the quantum potentials in the current density equations for the analysis of double-drift region IMPATT devices based on different semiconductors such as Wurtzite–GaN, InP, type-IIb diamond (C), 4H–SiC and Si deigned to operate at different millimeter-wave (mm-wave) and terahertz (THz) frequencies. It is observed that, the RF power output and DC to RF conversion efficiency of the devices operating at higher mm-wave (\(>\)140 GHz) and THz frequencies reduce due to the incorporation of quantum corrections in the model; but the effect of quantum corrections are negligible for the devices operating at lower mm-wave frequencies (\(\le \)140 GHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eisele, H., Chen, C.C., Munns, G.O., Haddad, G.I.: The potential of InP IMPATT diodes as high-power millimeter-wave sources: First experimental results. IEEE MTT-S International Microwave Symposium Digest, pp. 529–532 (1996)

  2. Mukherjee, M., Majumder, N.: Optically Illuminated 4H–SiC terahertz IMPATT device. Egypt J. Solids 30(1), 87–101 (2007)

    Google Scholar 

  3. Mukherjee, M., Majumder, N., Roy, S.K.: Prospects of 4H–SiC double drift region IMPATT device as a photo-sensitive high power source at 0.7 terahertz frequency regime. Active Passiv. Electron. Compon. 2008, 1–9 (2008)

    Article  Google Scholar 

  4. Mukherjee, M., Roy, S.K.: Optically modulated III–V nitride-based top-mounted and flip-chip IMPATT oscillators at terahertz regime: studies on the shift of avalanche transit time phase delay due to photogenerated carriers. IEEE Trans. Electron Devices 56(7), 1411–1417 (2009)

    Article  Google Scholar 

  5. Trew, R.J., Yan, J.B., Mock, P.M.: The potentiality of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc. IEEE 79(5), 598–620 (1991)

    Article  Google Scholar 

  6. Acharyya, A., Banerjee, J.P.: Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl. Nanosci. 4, 1–14 (2014)

    Article  Google Scholar 

  7. Evans, W.J., Haddad, G.I.: A large-signal analysis of IMPATT diodes. IEEE Trans. Electron Devices 15(10), 708–717 (1968)

    Article  Google Scholar 

  8. Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 6(1), 64–77 (1969)

    Article  Google Scholar 

  9. Gupta, M.S., Lomax, R.J.: A current-excited large-signal analysis of IMPATT devices and its circuit implementations. IEEE Trans. Electron Devices 20, 395–399 (1973)

    Article  Google Scholar 

  10. Jüngel, A., Tang, S.: A relaxation scheme for the hydrodynamic equations for semiconductors. Appl. Numer. Math. 43, 229–252 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Aluru, N.R., Raefsky, A., Pinsky, P.M., Law, K.H., Goossens, R.J.G., Dutton, R.W.: A finite element formulation for the hydrodynamic semiconductor device equations. Comput. Methods Appl. Mech. Eng. 107, 269–298 (1993)

    Article  MATH  Google Scholar 

  12. Sadi, T., Thobel, J.L.: Analysis of the high-frequency performance of InGaAs/InAlAs nanojunctions using a 3D Monte Carlo simulator. J. Appl. Phys. 106, 083709 (2009)

    Article  Google Scholar 

  13. Sadi, T., Kivisaari, P., Oksanen, J., Tulkki, J.: On the correlation of the Auger generated hot electron emission and efficiency droop in III-N LEDs. Appl. Phys. Lett. 105, 091106-1-5 (2014)

    Article  Google Scholar 

  14. Iniguez-de-la-Torre, I., et al.: Influence of the surface charge on the operation of ballistic T-branch junctions: a self-consistent model for Monte Carlo simulations. Semicond. Sci. Technol 22, 663–670 (2007)

    Article  Google Scholar 

  15. MacPherson, R.F., Dunn, G.M., Pilgrim, N.J.: Simulation of gallium nitride Gunn diodes at various doping levels and temperatures for frequencies up to 300 GHz by Monte Carlo simulation, and incorporating the effects of thermal heating. Semicond. Sci. Technol. 23, 055005 (2008)

    Article  Google Scholar 

  16. Vasileska, D., Mamaluy, D., Khan, H.R., Raleva, K., Goodnick, S.M.: Semiconductor device modeling. J. Comput. Theor. Nanosci. 5, 999–1030 (2008)

    Article  Google Scholar 

  17. Acharyya, A., Banerjee, S., Banerjee, J.P.: Influence of skin effect on the series resistance of millimeter-wave of IMPATT devices. J. Comput. Electron. 12(3), 511–525 (2013)

    Article  Google Scholar 

  18. Acharyya, A., Chakraborty, J., Das, K., Datta, S., De, P., Banerjee, S., Banerjee, J.P.: Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime. J. Semicond. 34(10), 104003-1-8 (2013)

    Article  Google Scholar 

  19. Acharyya, A., Datta, K., Ghosh, R., Sarkar, M., Sanyal, R., Banerjee, S., Banerjee, J.P.: Diamond based DDR IMPATTs: prospects and potentiality as millimeter-wave source at 94 GHz atmospheric window. Radioengineering 22(2), 624–631 (2013)

    Google Scholar 

  20. Acharyya, A., Banerjee, S., Banerjee, J.P.: A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-band Si IMPATTs from the electric field snap-shots. Int. J. Microw. Wirel. Technol. 5(1), 91–100 (2013)

    Article  Google Scholar 

  21. Acharyya, A., Mallik, A., Banerjee, D., Ganguli, S., Das, A., Dasgupta, S., Banerjee, J.P.: IMPATT devices based on group III–V compound semiconductors: prospects as potential terahertz radiators. HKIE Trans. 21(3), 135–147 (2014)

    Article  Google Scholar 

  22. Acharyya, A., Chakraborty, J., Das, K., Datta, S., De, P., Banerjee, S., Banerjee, J.P.: Large-signal characterization of DDR silicon IMPATTs operating up to 0.5 THz. Int. J. Microw. Wirel. Technol. 5(5), 567–578 (2013)

    Article  Google Scholar 

  23. Acharyya, A., Banerjee, S., Banerjee, J.P.: Large-signal simulation of 94 GHz pulsed DDR silicon IMPATTs including the temperature transient effect. Radioengineering 21(4), 1218–1225 (2012)

    Google Scholar 

  24. Acharyya, A., Banerjee, S., Banerjee, J.P.: Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. J. Semicond. 34(2), 024001-1-12 (2013)

    Article  Google Scholar 

  25. Acharyya, A., Chatterjee, S., Goswami, J., Banerjee, S., Banerjee, J.P.: Quantum drift-diffusion model for IMPATT devices. J. Comput. Electron. 13, 739–752 (2014)

    Article  Google Scholar 

  26. Ancona, M.G., Tiersten, H.F.: Macroscopic physics of the silicon inversion layer. Phys. Rev. B 35, 7959–7965 (1987)

    Article  Google Scholar 

  27. Ancona, M.G., Yu, Z., Dutton, R.W., Voorde, P.J.V., Cao, M., Vook, D.: Density-gradient analysis of MOS tunneling. IEEE Trans. Electron Devices 47(12), 2310–2319 (2000)

    Article  Google Scholar 

  28. Ancona, M.G.: Density-gradient theory: a macroscopic approach to quantum confinement and tunneling in semiconductor devices. J. Comput. Electron. 10, 65–97 (2011)

    Article  Google Scholar 

  29. Falco, C.D., Gatti, E., Lacaita, A.L., Sacco, R.: Quantum-corrected drift-diffusion models for transport in semiconductor devices. J. Comput. Phys. 204(2), 533–561 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Electronic Archive: New semiconductor materials, characteristics and properties. http://www.ioffe.ru/SVA/NSM/Semicond (2014). Accessed 12 Sept. 2014

  31. Shiyu, S.C., Wang, G.: High-field properties of carrier transport in bulk wurtzite GaN: Monte Carlo perspective. J. Appl. Phys. 103, 703–708 (2008)

  32. Kramer, B., Micrea, A.: Determination of saturated electron velocity in GaAs’. Appl. Phys. Lett. 26, 623–624 (1975)

    Article  Google Scholar 

  33. Ferry, D.K.: High-field transport in wide-bandgap semiconductors. Phys. Rev. B 12, 2361–2369 (1975)

    Article  Google Scholar 

  34. Canali, C., Gatti, E., Kozlov, S.F., Manfredi, P.F., Manfredotti, C., Nava, F., Quirini, A.: Electrical properties and performances of neutral diamond nuclear radiation detectors. Nucl. Instrum. Methods 160, 73–77 (1979)

    Article  Google Scholar 

  35. Vassilevski, K.V., Zekentes, K., Zorenko, A.V., Romanov, L.P.: Experimental determination of electron drift velocity in 4H–SiC \(\text{ p }^{+}-\text{ n }-\text{ n }^{+}\) avalanche diodes. IEEE Electron Device Lett. 21, 485–487 (2000)

    Article  Google Scholar 

  36. Canali, C., Ottaviani, G., Quaranta, A.A.: Drift velocity of electrons and holes and associated anisotropic effects in silicon. J. Phys. Chem. Solids 32(8), 1707–1720 (1971)

    Article  Google Scholar 

  37. Sze, S.M., Ryder, R.M.: Microwave avalanche diodes. Proc. IEEE Special Issue Microw. Semicond. Devices 59, 1140–1154 (1971)

    Google Scholar 

  38. Acharyya, A., Banerjee, J.P.: Potentiality of IMPATT devices as terahertz source: an avalanche response time based approach to determine the upper cut-off frequency limits. IETE J. Res. 59(2), 118–127 (2013)

    Article  Google Scholar 

  39. Acharyya, A., Banerjee, S., Banerjee, J.P.: Potentiality of semiconducting diamond as base material of millimeter-wave and terahertz IMPATT devices. J. Semicond. 35(3), 034005-1-11 (2014)

    Article  Google Scholar 

  40. Acharyya, A., Mukherjee, M., Banerjee, J. P.: Effects of tunnelling current on mm-wave IMPATT devices. Int. J. Electron. 1–28 (2014). doi:10.1080/00207217.2014.982211

  41. Kunihiro, K., Kasahara, K., Takahashi, Y., Ohno, Y.: Experimental evaluation of impact ionization coefficients in GaN. IEEE Electron Device Lett. 20, 608–610 (1999)

    Article  Google Scholar 

  42. Umebu, I., Chowdhury, A.N.M.M., Robson, P.N.: Ionization coefficients measured in abrupt InP junction. Appl. Phys. Lett. 36, 302–303 (1980)

    Article  Google Scholar 

  43. Konorova, E.A., Kuznetsov, Y.A., Sergienko, V.A., Tkachenko, S.D., Tsikunov, A.K., Spitsyn, A.V., Danyushevski, Y.Z.: Impact ionization in semiconductor structures made of ion-implanted diamond. Sov. Phys. - Semicond. 17, 146–149 (1983)

    Google Scholar 

  44. Konstantinov, A.O., Wahab, Q., Nordell, N., Lindefelt, U.: Ionization rates and critical fields in 4H–Silicon Carbide. Appl. Phys. Lett. 71, 90–92 (1997)

    Article  Google Scholar 

  45. Grant, W.N.: Electron and hole ionization rates in epitaxial Silicon. Solid State Electron 16(10), 1189–1203 (1973)

    Article  MathSciNet  Google Scholar 

  46. Elta, M.E.: The effect of mixed tunneling and avalanche breakdown on microwave transit time diodes (PhD Dissertation). Electron Physics Laboratory, University of Michigan, Ann Arbor, MI, Technical Report (1978)

  47. Kane, E.O.: Theory of tunneling. J. Appl. Phys. 32, 83–91 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  48. Ancona, M.G.: Macroscopic description of quantum-mechanical tunneling. Phys. Rev. B 42, 1222–1223 (1990)

    Article  Google Scholar 

  49. Ancona, M.G.: Density-gradient analysis of field emission from metals. Phys. Rev. B 46, 4874–4883 (1992)

    Article  Google Scholar 

  50. Luy, J.F., Casel, A., Behr, W., Kasper, E.: A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans. Electron Devices 34(5), 1084–1089 (1987)

    Article  Google Scholar 

  51. Wollitzer, M., Buchler, J., Schafflr, F., Luy, J.F.: D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz. Electron. Lett. 32, 122–123 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

The senior most author, Professor (Dr.) J. P. Banerjee (same as J. P. Bandyopadhyay) is grateful to the University Grants Commission, India for supporting the research through the award of an Emeritus Fellowship in the Institute of Radio Physics and Electronics, University of Calcutta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritra Acharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharyya, A., Goswami, J., Banerjee, S. et al. Quantum corrected drift-diffusion model for terahertz IMPATTs based on different semiconductors. J Comput Electron 14, 309–320 (2015). https://doi.org/10.1007/s10825-014-0658-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0658-9

Keywords

Navigation