Skip to main content

Advertisement

Log in

Polarization angle independent perfect multiband metamaterial absorber and energy harvesting application

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A new kind of multi-band metamaterial absorber based on the concentric ring resonators is engineered to be used in various microwave applications including energy harvesting. Numerical investigations are carried out step by step for observation of the effect of each ring resonator. The results reveal that the structure almost perfectly absorbs the electromagnetic wave with polarization angle independency at multiple resonant frequencies in the microwave range. Additionally, the structure is characterized according to the dimension and geometry variations. For the harvesting application, three different efficiencies are suggested, discussed, and calculated in terms of their contribution to the conditional realization of the connection between the absorption characteristics of the material and its energy harvesting functionality. Also the multi-band absorption characteristics of no-load conditions are presented and compared with the loading conditions through the energy harvesting. As a result, 50 % of the incoming wave energy whose correspondence is 0.25 W is converted to real power through the resistive loads at 5.88 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Veselago, V.G.: The electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities. Sov. Phys. Uspekhi 10, 509–514 (1968)

    Article  Google Scholar 

  2. Pendry, J.B., Holden, A.J., Robbins, D.J., Steward, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory 47, 2075–2084 (1999)

    Article  Google Scholar 

  3. Smith, D.R., Vier, D.C., Koschny, Th, Soukoulis, C.M.: Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. Lett. 71, 036617-1-11 (2005)

    Google Scholar 

  4. Sabah, C.: Multiband metamaterials based on multiple concentric open-ring resonators topology. IEEE J. Sel. Top. Quantum 19, 8500808-1-8 (2013)

    Article  Google Scholar 

  5. Sabah, C.: Novel dual-band, single and double negative metamaterials: nonconcentric delta loop resonators. Prog. Electromagn. Res. 25, 225–239 (2010)

    Article  Google Scholar 

  6. Sabah, C.: Multi-resonant metamaterial design based on concentric v-shaped magnetic resonators. J. Electromagn. Wave 26, 1105–1115 (2012)

    Article  Google Scholar 

  7. Urbani, F.: Experimental analysis of novel single-sided left-handed metamaterial. IEEE Antennas Wirel. Propag. Lett. 9, (2010)

  8. Sabah, C., Uckun, S.: Multilayer system of lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters. Prog. Electromagn. Res. 91, 349–364 (2009)

    Article  Google Scholar 

  9. Li, M.-H., Yang, H.-L., Tian, Y., Hou, D.-Y.: Dual bands of negative refractive indexes in the planar left-handed metamaterials. J. Magn. Magn. Mater. 323, 607–610 (2011)

  10. Sabah, C., Urbani, F.: Experimental analysis of \(\Lambda \)-shaped magnetic resonator for mu-negative metamaterials. Opt. Commun. 294, 409–413 (2013)

    Article  Google Scholar 

  11. Sabah, C.: Multiband planar metamaterials. Microw. Opt. Technol. Lett. 53, 2255–2258 (2011)

    Article  Google Scholar 

  12. Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402-1-4 (2008)

    Article  Google Scholar 

  13. Fernandes, H.C.C.: Metamaterial antennas and finlines using full wave analysis. In: Proceedings of the 12th WSEAS international conference on communications, pp. 69–73 (2008)

  14. Ullah, M.H., Islam, M.T.: Miniaturized modified circular patch monopole antenna on ceramic-polytetrafluroethylene composite material substrate. J. Comput. Electron. 13, 211–216 (2014)

    Article  Google Scholar 

  15. Unal, E., Dincer, F., Tetik, E., Karaaslan, M., Sabah, C.: Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting application. In: Recent Advances in Telecommunications, Informatics And Educational Technologies, pp. 98–102 (2014)

  16. Koutsoupidou, M., Karanasiou, I.S., Uzunoglu, N.: Substrate constructed by an array of split ring resonators for a THz planar antenna. J. Comput. Electron. 13, 593–598 (2014)

    Article  Google Scholar 

  17. Belkadi, B., Mahdjoub, Z.: Design of a compact dual-band-rejection microwave filter based on metamaterials transmission lines. In: Advances in Circuits, Systems, Signal Processing and Telecommunications, pp. 159–165 (2015)

  18. Jha, K.R., Singh, G.: Analysis and design of terahertz microstrip antenna on photonic bandgap material. J. Comput. Electron. 11, 364–373 (2015)

    Article  Google Scholar 

  19. Huang, L., Chen, H.: Multi-band and polarization insensitive metamaterial absorber. Prog. Electromagn. Res. 113, 103–110 (2011)

    Article  Google Scholar 

  20. Shen, X., Cui, T.J., Zhao, J., Ma, H.F., Jiang, W.X., Li, H.: Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 19, 9401–9407 (2011)

    Article  Google Scholar 

  21. Dincer, F., Akgol, O., Karaaslan, M., Unal, E., Sabah, C.: Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime. Prog. Electromagn. Res. 144, 93–101 (2014)

    Article  Google Scholar 

  22. Dincer, F., Karaaslan, M., Unal, E., Delihacioglu, K., Sabah, C.: Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonator. Prog. Electromagn. Res. 144, 123–132 (2014)

    Article  Google Scholar 

  23. Ramahi, O.M., Almoneef, T.S., Alshareef, M., Boybay, M.S.: Metamaterial particles for electromagnetic energy harvesting. Appl. Phys. Lett. 101, 173903-1-5 (2012)

    Article  Google Scholar 

  24. Hawkes, A.M., Katko, A.R., Cummer, S.A.: A microwave material with integrated power harvesting functionality. Appl. Phys. Lett. 103, 163901-1-3 (2013)

    Article  Google Scholar 

  25. Almoneef, T.S., Ramahi, O.M.: A 3-dimensional stacked metamaterial arrays for electromagnetic energy harvesting. Prog. Electromagn. Res. 146, 109–115 (2014)

    Article  Google Scholar 

  26. Zhao, J., Cheng, Q., Chen, J., Qui, M.Q., Jiang, W.X., Cui, T.J.: A tunable metamaterial absorber using varactor diodes. New. J. Phys. 15, 043049-1-11 (2013)

    Google Scholar 

  27. Sabah, C., Taygur, M.M., Zoral, E.Y.: Investigation of microwave metamaterial based on H-shaped resonator in a waveguide configuration and its sensor and absorber applications. J. Electromagn. Wave 29, 819–831 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The work reported here was carried out at Middle East Technical University - Northern Cyprus Campus (METU-NCC). It is supported by METU-NCC under the Grant Number of BAP-FEN-13-D-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sabah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunduz, O.T., Sabah, C. Polarization angle independent perfect multiband metamaterial absorber and energy harvesting application. J Comput Electron 15, 228–238 (2016). https://doi.org/10.1007/s10825-015-0735-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0735-8

Keywords

Navigation