Skip to main content

Advertisement

Log in

Zero and negative energy dissipation at information-theoretic erasure

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We introduce information-theoretic erasure based on Shannon’s binary channel formula. It is pointed out that this type of erasure is a natural energy-dissipation-free way in which information is lost in double-potential-well memories, and it may be the reason why the brain can forget things effortlessly. We also demonstrate a new non-volatile, charge-based memory scheme wherein the erasure can be associated with even negative energy dissipation; this implies that the memory’s environment is cooled during information erasure and contradicts Landauer’s principle of erasure dissipation. On the other hand, writing new information into the memory always requires positive energy dissipation in our schemes. Finally, we show a simple system where even a classical erasure process yields negative energy dissipation of arbitrarily large energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alicki, R.: Stability versus reversibility in information processing. Int. J. Mod. Phys. Conf. Ser. 33, 1460353 (2014)

    Article  Google Scholar 

  2. Kish, L.B., Granqvist, C.G.: Energy requirement of control: Comments on Szilard’s engine and Maxwell’s demon. EPL (Europhys. Lett.) 98, 68001 (2012)

    Article  Google Scholar 

  3. Kish, L.B., Granqvist, C.G.: Electrical Maxwell demon and Szilard engine utilizing Johnson noise, measurement, logic and control. PLoS One 7, e46800 (2012)

    Article  Google Scholar 

  4. Liang, Y., Poor, H.V., Shamai, S.: Information theoretic security. Found. Trends Commun. Inf. Theory 5, 355–580 (2008). doi:10.1561/0100000036

    Article  MATH  Google Scholar 

  5. Anderson, N.G.: Information erasure in quantum systems. Phys. Lett. A 372, 5552–5555 (2008)

    Article  MATH  Google Scholar 

  6. Maroney, O.J.E.: Generalizing Landauer’s principle. Phys. Rev. E 79, 031105 (2009)

  7. Kish, L.B., Granqvist, C.G., Khatri, S.P., Smulko, J.: “Critical remarks on Landauer’s principle of erasure–dissipation”, In: Proceedings of ICNF 2015 Conference, Xidian, China, 2015, to be published; preprint: http://vixra.org/abs/1503.0258; arXiv:1412.2166

  8. Porod, W., Grondin, R.O., Ferry, D.K.: Dissipation in computation. Phys. Rev. Lett. 52, 232–235 (1984)

  9. Porod, W., Grondin, R.O., Ferry, D.K., Porod, G.: Dissipation in computation—Reply. Phys. Rev. Lett. 52, 1206–1206 (1984)

    Article  Google Scholar 

  10. Porod, W.: Energy requirements in communication—Comment. Appl. Phys. Lett. 52, 2191–2191 (1988)

    Article  Google Scholar 

  11. Norton, J.D.: Eaters of the lotus: Landauer’s principle and the return of Maxwell’s demon. Stud. Hist. Philos. Mod. Phys. 36, 375–411 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Norton, J.D.: All shook up: Fluctuations, Maxwell’s demon and the thermodynamics of computation. Entropy 15, 4432–4483 (2013)

    Article  Google Scholar 

  13. Renyi, A.: Diary on Information Theory. Wiley, New York (1987)

    MATH  Google Scholar 

  14. Beisbart, C., Norton, J.D.: Why Monte Carlo simulations are inferences and not experiments. Int. Stud. Philos. Sci. 26, 403–422 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gyftopoulos, E.P., von Spakovsky, M.R.: “Comments on the breakdown of the Landauer bound for information erasure in the quantum regime”, http://arxiv.org/abs/0706.2176 (2007)

  16. Kish, L.B., Granqvist, C.G., Khatri, S.P., Wen, H.: Demons: Maxwell’s demon, Szilard’s engine and Landauer’s erasure-dissipation. Int. J. Mod. Phys. Conf. Ser. 33, 1460364 (2014)

    Article  Google Scholar 

  17. Bennett, C.H.: Demons, engines and the second Law. Sci. Am. 257, 108–116 (1987)

    Article  Google Scholar 

  18. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 261–269 (1961)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo Bela Kish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kish, L.B., Granqvist, CG., Khatri, S.P. et al. Zero and negative energy dissipation at information-theoretic erasure. J Comput Electron 15, 335–339 (2016). https://doi.org/10.1007/s10825-015-0754-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0754-5

Keywords

Navigation