Skip to main content
Log in

Silicene field effect transistor with high on/off current ratio and good current saturation

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We investigate theoretically the possibility of exploiting the electrically tunable band gap property of silicene to achieve field effect transistor with improved characteristics. We find that the silicene field effect transistor where a band gap is introduced through a perpendicular electric field shows a subthreshold swing smaller than 60 mV/decade and a switching effect with high on/off current ratio exceeding \(10^{5}\). We find also that the device output characteristic displays a very good saturation due to improved pinch-off of the channel, stemming from the electrically induced band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yamakage, A., Ezawa, M., Tanaka, Y., Nagaosa, N.: Charge transport in pn and npn junctions of silicene. Phys. Rev. B 88, 085322 (2013)

    Article  Google Scholar 

  2. Li, H., Wang, L., Liu, Q., Zheng, J., Mei, W.N., Gao, Z., Shi, J., Lu, J.: High performance silicene nanoribbon field effect transistors with current saturation. Eur. Phys. J. B 85, 274 (2012)

    Article  Google Scholar 

  3. Bishnoi, B., Ghosh, B.: Spin transport in silicene and germanene. RSC Adv. 3, 26153 (2013)

    Article  Google Scholar 

  4. Mehrotra, N., Kumar, N., Sen, A.: Charge transport in a zigzag silicene nanoribbon. AIP. Conf. Proc. 1512, 1304 (2013)

    Article  Google Scholar 

  5. Guzman-Verri, G.G., Lew Yan Voon, L.C.: Electronic structure of silicon-based nanostructures. Phys. Rev. B 76, 075131 (2007)

    Article  Google Scholar 

  6. Liu, C.C., Feng, W., Yao, Y.: Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)

    Article  Google Scholar 

  7. Liu, C.C., Jiang, H., Yao, Y.: Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 195430 (2011)

    Article  Google Scholar 

  8. Lin, Y.M., Jenkins, K.A., Valdes-Garcia, A., Small, J.P., Farmer, D.B., Avouris, P.: Operation of graphene transistors at gigahertz frequencies. Nano Lett. 9, 422 (2009)

    Article  Google Scholar 

  9. Michetti, P., Cheli, M., Iannaccone, G.: Model of tunneling transistors based on graphene on SiC. Appl. Phys. Lett. 96, 133508 (2010)

    Article  Google Scholar 

  10. Han, M., Ozyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  Google Scholar 

  11. Yan, Q., Huang, B., Yu, J., Zheng, F., Zang, J., Wu, J., Gu, B.L., Liu, F., Duan, W.: Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano lett. 6, 1469 (2007)

    Article  Google Scholar 

  12. Castro, E.V., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., dos Santos, J.M.B.L., Nilsson, J., Guinea, F., Geim, A.K., Neto, A.H.C.: Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007)

    Article  Google Scholar 

  13. Ezawa, M.: A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 14, 033003 (2012)

    Article  Google Scholar 

  14. Ezawa, M.: Valley polarized metals and quantum anomalous Hall effect in silicene. Phys. Rev. Lett. 109, 055502 (2012)

    Article  Google Scholar 

  15. Ni, Z.Y., Liu, Q.H., Tang, K.C., Zheng, J.X., Zhou, J., Qin, R., Gao, Z.X., Yu, D.P., Lu, J.: Tunable bandgap in silicene and germanene. Nano Lett. 12, 113 (2012)

    Article  Google Scholar 

  16. Vargiamidis, V., Vasilopoulos, P.: Electric- and exchange- field controlled transport through silicene barriers: Conductance gap and near-perfect spin polarization. Appl. Phys. Lett. 105, 223105 (2014)

    Article  Google Scholar 

  17. Sadeghi, H.: Electrical transport model of silicene as a channel of field effect transistor. J. Nanosci. Nanotechnol. 14, 4178 (2014)

    Article  Google Scholar 

  18. Zandvliet, H.J.W.: Can a silicene transistor be realized? Nano Today 9, 691 (2014)

    Article  Google Scholar 

  19. Lay, G.L.: 2D materials: Silicene transistor. Nat. Nanotechnol. 10, 202 (2015)

    Article  Google Scholar 

  20. Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A., Akinwande, D.: Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227 (2015)

    Article  Google Scholar 

  21. Yokoyama, T.: Spin and valley transports in junctions of Dirac fermions. New J. Phys. 16, 085005 (2014)

    Article  Google Scholar 

  22. Vali, M., Dideban, D., Moezi, N.: A scheme for a topological insulator field effect transistor. Phys. E 69, 360 (2015)

    Article  Google Scholar 

  23. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  24. Wang, L., Shen, K., Cho, S.Y., Wu, M.W.: A Scheme for spin transistor with extremely large on/off current ratio. J. Appl. Phys. 104, 123709 (2008)

    Article  Google Scholar 

  25. Meric, I., Han, M.Y., Young, A.F., Ozyilmaz, B., Kim, P., Shepard, K.L.: Curent saturation in zero-bandgap top-gated graphene field effect transistors. Nat. Nanotechnol. 3, 654 (2008)

    Article  Google Scholar 

  26. Szafranek, B.N., Fiori, G., Schall, D., Neumaier, D., Kurz, H.: Current saturation and voltage gain in bilayer graphene field effect transistors. Nano Lett. 12, 1324 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Vali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vali, M., Dideban, D. & Moezi, N. Silicene field effect transistor with high on/off current ratio and good current saturation. J Comput Electron 15, 138–143 (2016). https://doi.org/10.1007/s10825-015-0758-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0758-1

Keywords

Navigation