Skip to main content
Log in

Electro-thermal simulation based on coupled Boltzmann transport equations for electrons and phonons

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

To study the thermal effect in nano-transistors, a simulator solving self-consistently the Boltzmann transport equations for both electrons and phonons has been developed. It has been used to investigate the self-heating effects in a 20 nm-long double-gate MOSFET (Fig. 1). A Monte Carlo solver for electrons is coupled with a direct solver for the steady-state phonon transport. The latter is based on the relaxation time approximation. This method is particularly efficient to provide a deep insight of the out-of-equilibrium thermal dissipation occurring at the nanometer scale when the device length is smaller than the mean free path of both charge and thermal carriers. It allows us to evaluate accurately the phonon emission and absorption spectra in both real and energy spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fischetti, M.V., Laux, S.E.: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38(14), 9721 (1988)

    Article  Google Scholar 

  2. Jungemann, C., Meinerzhagen, B.: Hierarchical device simulation: the Monte-Carlo perspective. Springer, NewYork (2003)

    Book  MATH  Google Scholar 

  3. Luisier, M., Klimeck, G.: Atomistic full-band simulations of silicon nanowire transistors: effects of electron-phonon scattering. Phys. Rev. B 80(15), 155430 (2009)

    Article  Google Scholar 

  4. Saint-Martin, J., et al.: Multi sub-band Monte Carlo simulation of an ultra-thin double gate MOSFET with 2D electron gas. Semicond. Sci. Technol. 21(4), L29 (2006)

    Article  Google Scholar 

  5. Lucci, L., et al.: Multisubband Monte Carlo study of transport, quantization, and electron-gas degeneration in ultrathin SOI n-MOSFETs. IEEE Trans. Electron Devices 54(5), 1156–1164 (2007)

    Article  Google Scholar 

  6. Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 96(4), 2192–2203 (2004)

    Article  Google Scholar 

  7. Querlioz, D., et al.: A study of quantum transport in end-of-roadmap DG-MOSFETs using a fully self-consistent Wigner Monte Carlo approach. IEEE Trans. Nanotechnol. 5(6), 737–744 (2006)

    Article  Google Scholar 

  8. Anantram, M., Lundstrom, M.S., Nikonov, D.E.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511–1550 (2008)

    Article  Google Scholar 

  9. Esseni, D., Palestri, P., Selmi, L.: Nanoscale MOS transistors: semi-classical transport and applications. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  10. Poli, S., et al.: Size dependence of surface-roughness-limited mobility in silicon-nanowire FETs. IEEE Trans. Electron Devices 55(11), 2968–2976 (2008)

    Article  Google Scholar 

  11. Cavassilas, N., et al.: One-shot current conserving quantum transport modeling of phonon scattering in n-type double-gate field-effect-transistors. Appl. Phys. Lett. 102(1), 013508 (2013)

    Article  Google Scholar 

  12. Niquet, Y.-M., et al.: Quantum calculations of the carrier mobility: Methodology, Matthiessen’s rule, and comparison with semi-classical approaches. J. Appl. Phys. 115(5), 054512 (2014)

    Article  Google Scholar 

  13. Mazumder, S., Majumdar, A.: Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Transf. 123(4), 749–759 (2001)

    Article  Google Scholar 

  14. Ju, Y., Goodson, K.: Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74(20), 3005–3007 (1999)

    Article  Google Scholar 

  15. Cahill, D.G., et al.: Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003)

    Article  Google Scholar 

  16. Cahill, D.G., et al.: Nanoscale thermal transport. II. 2003–2012. Applied. Phys. Rev. 1(1), 011305 (2014)

    MathSciNet  Google Scholar 

  17. Volz, D.L., Sebastian, Jean-Bernard Saulnier: Clamped nanowire thermal conductivity based on phonon transport equation. Microscale Thermophys. Eng. 5(3), 191–207 (2001)

    Article  Google Scholar 

  18. Terris, D., et al.: Prediction of the thermal conductivity anisotropy of Si nanofilms. Results of several numerical methods. Int. J. Therm. Sci. 48(8), 1467–1476 (2009)

    Article  Google Scholar 

  19. Sellan, D., et al.: Cross-plane phonon transport in thin films. J. Appl. Phys. 108(11), 113524 (2010)

    Article  Google Scholar 

  20. Heino, P.: Lattice-Boltzmann finite-difference model with optical phonons for nanoscale thermal conduction. Comput. Math. Appl. 59(7), 2351–2359 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nabovati, A., Sellan, D.P., Amon, C.H.: On the lattice Boltzmann method for phonon transport. J. Comput. Phys. 230(15), 5864–5876 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lacroix, D., Joulain, K., Lemonnier, D.: Monte Carlo transient phonon transport in silicon and germanium at nanoscales. Phys. Rev. B 72(6), 064305 (2005)

    Article  Google Scholar 

  23. Chen, Y., et al.: Monte Carlo simulation of silicon nanowire thermal conductivity. J. Heat Transf. 127(10), 1129–1137 (2005)

    Article  Google Scholar 

  24. Essner, O., et al.: Improved Monte Carlo algorithm of phonon transport in semiconductor nanodevices. J. Phys. 92(1), 012079 (2007)

  25. Randrianalisoa, J., Baillis, D.: Monte Carlo simulation of steady-state microscale phonon heat transport. J. Heat Transf. 130(7), 072404 (2008)

    Article  Google Scholar 

  26. Wong, B.T., Francoeur, M., Mengüç, M.Pinar: A Monte Carlo simulation for phonon transport within silicon structures at nanoscales with heat generation. Int. J. Heat Mass Transf. 54(9), 1825–1838 (2011)

    Article  MATH  Google Scholar 

  27. Hamzeh, H., Aniel, F.: Monte Carlo study of phonon dynamics in III–V compounds. J. Appl. Phys. 109(6), 063511 (2011)

    Article  Google Scholar 

  28. Zebarjadi, M., Shakouri, A., Esfarjani, K.: Thermoelectric transport perpendicular to thin-film heterostructures calculated using the Monte Carlo technique. Phys. Rev. B 74(19), 195331 (2006)

    Article  Google Scholar 

  29. Rowlette, J., Goodson, K.E.: Fully coupled nonequilibrium electron-phonon transport in nanometer-scale silicon FETs. IEEE Trans. Electron Devices 55(1), 220–232 (2008)

    Article  Google Scholar 

  30. Sadi, T., Kelsall, R.W.: Monte Carlo study of the electrothermal phenomenon in silicon-on-insulator and silicon-germanium-on-insulator metal-oxide field-effect transistors. J. Appl. Phys. 107(6), 064506 (2010)

    Article  Google Scholar 

  31. Shi, Y., Aksamija, Z., Knezevic, I.: Self-consistent thermal simulation of GaAs/Al0. 45Ga0. 55As quantum cascade lasers. J. Comput. Electron. 11(1), 144–151 (2012)

    Article  Google Scholar 

  32. Raleva, K., et al.: Modeling thermal effects in nanodevices. IEEE Trans. Electron Devices 55(6), 1306–1316 (2008)

    Article  Google Scholar 

  33. Vasileska, D., et al.: Current progress in modeling self-heating effects in FD SOI devices and nanowire transistors. J. Comput. Electron. 11(3), 238–248 (2012)

    Article  Google Scholar 

  34. Kamakura, Y., et al.: Coupled Monte Carlo simulation of transient electron-phonon transport in nanoscale devices. In: IEEE international conference on simulation of semiconductor processes and devices (SISPAD), 2010

  35. Ni, C., et al.: Coupled electro-thermal simulation of MOSFETs. J. Comput. Electron. 11(1), 93–105 (2012)

    Article  Google Scholar 

  36. Ni, C. (ed.): Phonon transport models for heat conduction in sub-micron geometries with application to microelectronics. Purdue University, West Lafayette (2009)

    Google Scholar 

  37. Pop, E., Dutton, R.W., Goodson, K.E.: Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion. J. Appl. Phys. 96(9), 4998–5005 (2004)

    Article  Google Scholar 

  38. Nghiem, T.T.T., Saint-Martin, J., Dollfus, P.: New insights into self-heating in double-gate transistors by solving Boltzmann transport equations. J. Appl. Phys. 116(7), 074514 (2014)

    Article  Google Scholar 

  39. Pop, E., Sinha, S., Goodson, K.E.: Heat generation and transport in nanometer-scale transistors. Proc. IEEE 94(8), 1587–1601 (2006)

  40. Callaway, J.: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113(4), 1046 (1959)

    Article  MATH  Google Scholar 

  41. Holland, M.: Analysis of lattice thermal conductivity. Phys. Rev. 132(6), 2461 (1963)

    Article  Google Scholar 

  42. Glassbrenner, C., Slack, G.A.: Thermal conductivity of silicon and germanium from 3 K to the melting point. Phys. Rev. 134(4A), A1058 (1964)

    Article  Google Scholar 

  43. Debernardi, A., Baroni, S., Molinari, E.: Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory. Phys. Rev. Lett. 75(9), 1819 (1995)

    Article  Google Scholar 

  44. Menéndez, J., Cardona, M.: Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and \(\alpha \)-Sn: Anharmonic effects. Phys. Rev. B 29, 2051 (1984)

    Article  Google Scholar 

  45. Ju, Y.S.: Phonon heat transport in silicon nanostructures. Appl. Phys. Lett. 87(15), 153106 (2005)

    Article  Google Scholar 

  46. Liu, W., Asheghi, M.: Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl. Phys. Lett. 84(19), 3819–3821 (2004)

    Article  Google Scholar 

  47. Asheghi, M., et al.: Phonon-boundary scattering in thin silicon layers. Appl. Phys. Lett. 71(13), 1798–1800 (1997)

    Article  Google Scholar 

  48. Liu, W., Asheghi, M.: Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperatures. J. Appl. Phys. 98(12), 123523 (2005)

    Article  Google Scholar 

  49. Heaslet, M.A., Warming, R.F.: Radiative transport and wall temperature slip in an absorbing planar medium. Int. J. Heat Mass Transf. 8(7), 979–994 (1965)

    Article  Google Scholar 

  50. Nghiêm, T.T.T.: Numerical study of electro-thermal effects in silicon devices. University of Paris-Sud, Orsay (2013)

    Google Scholar 

  51. Martin, J.S., Bournel, A., Dollfus, P.: On the ballistic transport in nanometer-scaled DG MOSFETs. IEEE Trans. Electron Devices 51(7), 1148–1155 (2004)

    Article  Google Scholar 

  52. Rhew, J.-H., Ren, Z., Lundstrom, M.S.: A numerical study of ballistic transport in a nanoscale MOSFET. Solid State Electron. 46(11), 1899–1906 (2002)

    Article  Google Scholar 

  53. Rowlette, J.A., Goodson, K.E.: Fully coupled nonequilibrium electron-phonon transport in nanometer-scale silicon FETs. IEEE Trans. Electron Devices 55(1), 220–232 (2008)

    Article  Google Scholar 

  54. Aubry-Fortuna, V., Dollfus, P., Galdin-Retailleau, S.: Electron effective mobility in strained-Si/Si< sub> 1- x</sub> Ge< sub> x</sub> MOS devices using Monte Carlo simulation. Solid-state electronics 49(8), 1320–1329 (2005)

  55. Mohamed, M., et al.: A Conjoined Electron and Thermal Transport Study of Thermal Degradation Induced During Normal Operation of Multigate Transistors. IEEE Trans. Electron Devices 61(4), 976–983 (2014)

    Article  Google Scholar 

  56. Paulavičius, G., Mitin, V.V., Bannov, N.A.: Coupled electron and nonequilibrium optical phonon transport in a GaAs quantum well. J. Appl. Phys. 82(11), 5580–5588 (1997)

    Article  Google Scholar 

  57. Aksamija, Z., Knezevic, I.: Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes. Phys. Rev. B 82(4), 045319 (2010)

    Article  Google Scholar 

  58. Lang, G., et al.: Anharmonic line shift and linewidth of the Raman mode in covalent semiconductors. Phys. Rev. B 9, 6182 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the French ANR through project NOE (12JS03-006-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Saint-Martin.

Appendix: Analytical temperature profile with non-uniform diffusivity

Appendix: Analytical temperature profile with non-uniform diffusivity

In steady-state, without heat generation, the diffusive heat equation can be reduced to

$$\begin{aligned} \nabla \left( {D_T \nabla T} \right) = 0, \end{aligned}$$
(13)

where \(D_{T}\) is the thermal diffusivity, defined from the thermal conductivity \(\kappa _T \) by \(D_{T}=\kappa _{T}/(\rho \times \hbox {c}_{s})\), where \(c_{s}\) is the specific heat and \(\rho \) the mass density.

According to experimental data, the temperature dependence of the thermal diffusivity \(D_{T}\) in silicon is assumed to follow

$$\begin{aligned} D_T = C\cdot T^{\alpha }, \end{aligned}$$
(14)

where C and \(\alpha \) are the fitting parameters.

Substituting (14) into (13) and noting that \(T^{\alpha }\nabla T = \frac{\nabla T^{\alpha +1}}{\alpha +1}\), a Laplace’s equation is derived for the variable \(U=T^{\alpha +1}\).

By integrating the above equation in its 1D form with boundary temperatures Th (at \(z=0\)) and Tc (at \(z=\hbox {L}\)), one obtains the temperature profile

$$\begin{aligned} T = \left( {\frac{z}{L}T_c^{\alpha +1} + \left( {1-\frac{z}{L}} \right) \;T_h^{\alpha +1} } \right) ^{1/\left( {\alpha +1} \right) } \end{aligned}$$
(15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nghiêm, T.T.T., Saint-Martin, J. & Dollfus, P. Electro-thermal simulation based on coupled Boltzmann transport equations for electrons and phonons. J Comput Electron 15, 3–15 (2016). https://doi.org/10.1007/s10825-015-0773-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0773-2

Keywords

Navigation