Skip to main content
Log in

Double gate graphene nanoribbon field effect transistor with electrically induced junctions for source and drain regions

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper a novel graphene nanoribbon transistor with electrically induced junction for source and drain regions is proposed. An auxiliary junction is used to form electrically induced source and drain regions beside the main regions. Two parts of same metal are implemented at both sides of the main gate region. These metals which act as side gates are connected to each other to form auxiliary junction. A fixed voltage is applied on this junction during voltage variation on other junctions. Side metals have smaller workfunction than the middle one. Tight-binding Hamiltonian and nonequilibrium Green’s function formalism are used to perform atomic scale electronic transport simulation. Due to the difference in metals workfunction, additional gates create two steps in potential profile. These steps increase horizontal distance between conduction and valance bands at gate to drain/source junction and consequently lower band to band tunneling probability. Current ratio and subthreshold swing improved at different channel lengths. Furthermore, device reliability is improved where electric field at drain side of the channel is reduced. This means improvement in leakage current, hot electron effect behavior and breakdown voltage. Application to multi-input logic gates shows higher speed and smaller power delay product in comparison with conventional platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brennan, K.F.: Introduction to Semiconductor Devices for Computing and Telecommunications Applications. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  2. http://www.itrs.net/

  3. Murali, R., Brenner, K., Yinxiao, Y., Beck, T.: Resistivity of graphene nanoribbon interconnects. IEEE Electron Device Lett. 30(6), 611–613 (2009)

    Article  Google Scholar 

  4. Murali, R., Yang, Y., Brenner, K., Beck, T., Meind, J.D.: Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 94(24), 243114 (2009)

    Article  Google Scholar 

  5. Murali, R.: Graphene transistors. Graphene Nanoelectronics from Materials to Circuits, pp. 51–91. Springer, New York (2012)

    Chapter  Google Scholar 

  6. Gholipour, M., Masoumi, N., Chen, Y., Chen, D., Pourfath, M.: Asymmetric gate Schottky–Barrier graphene nanoribbon FETs for low-power design. IEEE Trans. Electron Devices. 61(12), 4000–4006 (2014)

    Article  Google Scholar 

  7. Naderi, A.: Theoretical analysis of a novel dual gate metal-graphene nanoribbon field effect transistor. Mater. Sci. Semicond. Process. 31, 223–228 (2015)

    Article  Google Scholar 

  8. Gholipour, M., Masoumi, N.: Graphene nanoribbon crossbar architecture for low power and dense circuit implementations. Microelectron. J. 45(11), 1533–1541 (2014)

    Article  Google Scholar 

  9. Zhao, P., Guo, J.: Modeling edge effects in graphene nanoribbon field effect transistors with real and mode space methods. J. Appl. Phys. 105, 034503 (2009)

    Article  Google Scholar 

  10. Jang, S.K., Jeon, J., Jeon, S.M., Song, Y.J., Lee, S.: Effects of dielectric material properties on graphene transistor performance. Solid-State Electron. 109, 8–11 (2015)

    Article  Google Scholar 

  11. Naderi, A., Keshavarzi, P.: Electrically-activated source extension graphene nanoribbon field effect transistor: novel attributes and design considerations for suppressing short channel effects. Superlattices Microstruct. 72, 305–318 (2014)

    Article  Google Scholar 

  12. Liang, G., Neophytou, N., Lundstrom, M., Nikonov, D.: Computational study of double-gate graphene nano-ribbon transistors. J. Comput. Electron. 7(3), 394–397 (2008)

    Article  Google Scholar 

  13. Grassi, R., Gnudi, A., Gnani, E., Reggiani, S., Baccarani, G.: An investigation of performance limits of conventional and tunneling graphene-based transistors. J. Comput. Electron. 8(3), 441–450 (2009)

    Article  Google Scholar 

  14. Kawaura, H., Sakamoto, T., Baba, T., Ochiai, Y., Fujita, J., Matsui, S., Sone, J.: Transistor operation of 30 nm gate-length EJ-MOSFETs. IEEE Electron Device Lett. 19(3), 74–76 (1998)

    Article  Google Scholar 

  15. Kawaura, H., Sakamoto, T., Baba, T., Ochiai, Y., Fujita, J., Sone, J.: Transistor characteristics of 14-nm-gate-length EJ-MOSFETs. IEEE Trans. Electron Devices 47(4), 856–860 (2000)

    Article  Google Scholar 

  16. Han, S., Chang, S., Lee, J., Shin, H.: 50 nm MOSFET with electrically induced source/drain (S/D) extensions. IEEE Trans. Electron Devices 48(9), 2058–2064 (2001)

    Article  Google Scholar 

  17. Choi, Y.J., Choi, B.Y., Kim, K.R., Lee, J.D., Park, B.G.: A new 50-nm nMOSFET with side-gates for virtual source-drain extensions. IEEE Trans. Electron Devices 49(42), 1833–1835 (2002)

    Article  Google Scholar 

  18. Arefinia, Z., Orouji, A.: Quantum simulation study of a new carbon nanotube field-effect transistor with electrically induced source/drain extension. IEEE Trans. Device Mater. Relat. 9(9), 237–243 (2009)

    Article  Google Scholar 

  19. Sarvari, H., Ghayour, R., Dastjerdy, E.: Frequency analysis of graphene nanoribbon FET by non-equilibrium Green’s function in mode space. Physica E 43(8), 1509–1513 (2011)

    Article  Google Scholar 

  20. Noei, M., Moradinasab, M., Fathipour, M.: A computational study of ballistic graphene nanoribbon field effect transistors. Physica E 44(7), 45–52 (2012)

    Google Scholar 

  21. Wang, Z., Li, Q., Zheng, H., Su, H., Shi, Q., Chen, J.: Tuning the electronic structure of graphene nanoribbons through chemical edge modification: a theoretical study. Phys. Rev. B 75, 113406 (2007)

    Article  Google Scholar 

  22. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  23. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  24. Goharrizi, A.Y., Pourfath, M., Fathipour, M., Kosina, H., Selberherr, S.: An analytical model for line-edge roughness limited mobility of graphene nanoribbons. IEEE Trans. Electron Devices 58(11), 3725–3735 (2011)

    Article  Google Scholar 

  25. Haixia, D., Kai-Tak, L., Samudra, G., Sai-Kong, Ch., Liang, G.: Graphene nanoribbon tunneling field-effect transistors with a semiconducting and a semimetallic heterojunction channel. IEEE Trans. Electron Devices 59(5), 1454–1461 (2012)

    Article  Google Scholar 

  26. Pei, Zh, Feenstra, R.M., Gong, G., Jena, D.: SymFET: a proposed symmetric graphene tunneling field-effect transistor. IEEE Trans. Electron Devices 60(3), 951–957 (2013)

    Article  Google Scholar 

  27. Hsu, F., Grinolds, H.: Structure-enhanced MOSFET degradation due to hot electron injection. IEEE Electron Device Lett. 5(3), 71–74 (1984)

    Article  Google Scholar 

  28. Mao, L.F., Li, X.J., Wang, Z.O., Wang, J.Y.: The gate leakage current in graphene field-effect transistor. IEEE Electron Device Lett. 29(9), 1047–1049 (2008)

    Article  Google Scholar 

  29. Ghadiry, M., Nadi, M., Saiedmanesh, M., Abadi, H.K.F.: An analytical approach to study breakdown mechanism in graphene nanoribbon field effect transistots. J. Comput. Theor. Nanosci. 11(2), 339–343 (2014)

    Article  Google Scholar 

  30. Youngki, Y., Fiori, G., Seokmin, H., Iannaccone, G., Guo, J.: Performance comparison of graphene nanoribbon FETs with Schottky Contacts and doped reservoirs. IEEE Trans. Electron Devices 55(9), 2314–2323 (2008)

    Article  Google Scholar 

  31. Naderi, A., Keshavarzi, P.: Novel carbon nanotube field effect transistor with graded double halo channel. Superlattices Microstruct. 51(5), 668–679 (2012)

    Article  Google Scholar 

  32. Kopylov, S., Tzalenchuk, A., Kubatkin, S., Fal’ko, V.I.: Charge transfer between epitaxial graphene and silicon carbide. Appl. Phys. Lett. 97(11), 112109 (2010)

    Article  Google Scholar 

  33. Farmer, D.B., Golizadeh-Mojarad, R., Perebeinos, V., Lin, Y.M., Tulevski, G.S., Tsang, J.C., Avouris, P.: Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. 9(12), 388 (2009)

    Article  Google Scholar 

  34. Tseng, F., Unluer, D., Stan, M.R., Ghosh, A.W.: Graphene nanoribbons: from chemistry to circuits. In: Raza, H. (ed.) Graphene Nanoelectronics Metrology, Synthesis, Properties and Applications, pp. 555–586. Springer, Heidelberg (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Naderi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, A. Double gate graphene nanoribbon field effect transistor with electrically induced junctions for source and drain regions. J Comput Electron 15, 347–357 (2016). https://doi.org/10.1007/s10825-015-0781-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0781-2

Keywords

Navigation