Skip to main content

Advertisement

Log in

Theoretical study of anthoxanthin dyes for dye sensitized solar cells (DSSCs)

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Systematic theoretical investigations of selected anthoxanthins belonging to the Flavone and Flavonol families are carried out with the aim of identifying the dye with the optimum properties for use as sensitizers in dye sensitized solar cells (DSSCs). The ground-state geometries of these dyes in the gas phase are fully optimized by Density-Functional Theory (DFT). Time-Dependent Density Functional Theory (TDDFT) with Polarizable Continuum Model (PCM) for solvent effects is invoked to predict the vertical electron excitation energy, maximal absorption wavelength, oscillator strengths, light harvesting efficiency (LHE), free energy change of electron injection \(\left( {\Delta } G^{inject}\right) \) and dye regeneration \(\left( {\Delta } G_{dye}^{regen}\right) \). The charge transfer from the excited state and charge regeneration in the ground state of the dyes is also identified. All these calculations were performed in the gas phase and with dimethyl sulfoxide (DMSO) as solvent. Finally, the electron transfer characteristics between the dye’s lowest unoccupied molecular orbital (LUMO) and the conduction band of \(\hbox {TiO}_{2}\) are investigated. The study reveals that the electron transfer character of these dyes can be made suitable for applications in DSSCs with structural modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gratzel, M.: Dye-sensitized solar cells. J. Photochem. Photobiol. C 4, 145–153 (2003)

    Article  Google Scholar 

  2. Opera, C.I., Panait, P., Cimpoesu, F., Ferbinteanu, M., Girtu, M.A.: Density functional theory (DFT) study of Coumarin-based dyes adsorbed on \(\text{ TiO }_{2}\) nanoclusters—applications to dye-sensitized solar cells. Materials 6, 2372–2392 (2013)

    Article  Google Scholar 

  3. Jungsuttiwong, S., Tarsang, R., Pansay, S., Yakhantip, T., Promarak, V., Sudyoadsuk, T., Kaewin, T., Saengsuwan, S., Namuangrak, S.: Theoretical investigation of carbazole-based D-D-\(\uppi \)-A organic dyes for efficient dye-sensitized solar cell. World Acad. Sci. Eng. Technol. 53, 1020–1026 (2011)

    Google Scholar 

  4. Fan, W., Deng, W.: Incorporation of thiadiazole derivatives as \(\uppi \)-spacer to construct efficient metal-free organic dye sensitizers for dye-sensitized solar cells: a theoretical study. Commun. Comput. Chem. 1, 152–170 (2013)

    Google Scholar 

  5. Armas, R., Miguel, M., Ovideo, J., Sanz, J.F.: Coumarin derivatives for dye sensitized solar cells: a TD-DFT study. Phys. Chem. Chem. Phys. 14, 225–233 (2012)

    Article  Google Scholar 

  6. Lopez, J.B., Gonzalez, J.C., Holguin, N.F., Sanchez, J.A., Mitnik, D.G.: Density functional theory (DFT) study of triphenylamine-based dyes for their use as sensitizers in molecular photovoltaics. Int. J. Mol. Sci. 13, 4418–4432 (2012)

    Article  Google Scholar 

  7. Xu, J., Zhang, H., Liang, G., Wang, L., Xu, W., Ciu, W., Li, Z.: DFT Studies on the electronic structures of indoline dyes for dye-sensitized solar cells. J. Serb. Chem. Soc. 75, 259–269 (2010)

    Article  Google Scholar 

  8. Bahers, T.L., Pauporte, T., Scalmani, G., Adamo, C., Ciofini, I.: A TD-DFT investigation of ground and excited state properties in indoline dyes used for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 11, 11276–11284 (2009)

    Article  Google Scholar 

  9. Hao, S., Wu, J., Huang, Y., Lin, J.: Natural dyes as photosensitizers for dye-sensitized solar cell. Sol. Energy 80, 209–214 (2006)

    Article  Google Scholar 

  10. Chang, H., Wu, H.M., Chen, T.L., Huang, K.D., Jwo, C.S., Lo, Y.J.: Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea. J. Alloy. Compd. 495, 606–610 (2010)

    Article  Google Scholar 

  11. Ortiz, N.M.G., Maldonado, I.A.V., Espadas, A.R.P., Rejon, G.J.M., Barrios, J.A.A., Oskam, G.: Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Solar Energy Mater. Solar Cells 94, 40–44 (2010)

    Article  Google Scholar 

  12. Zhao, W., Bian, W.: Investigation of the structures and electronic spectra for coumarin 6 through TD-DFT calculations including PCM solvation. J. Mol. Struct. THEOCHEM 818, 43–49 (2007)

    Article  Google Scholar 

  13. Poudel, P., Qiao, Q.: Carbon nanostructure counter electrodes for low cost and stable dye-sensitized solar cells. Nano Energy 4, 157–175 (2014)

    Article  Google Scholar 

  14. Gokilamani, N., Muthukumarasamy, N., Thambidurai, M., Ranjitha, A., Velauthapillai, D.: Utilization of natural anthocyanin pigments as photosensitizers for dye-sensitized solar cells. J. Sol-Gel Sci. Tecnol. 66, 212–219 (2013)

    Article  Google Scholar 

  15. Chien, C.Y., Hsu, B.D.: Optimization of the dye-sensitized solar cell with anthocyanin as photosensitizer. Sol. Energy 98, 203–211 (2013)

    Article  Google Scholar 

  16. Sakata, K., Saito, N., Honda, T.: Ab initio study of molecular structures and excited states in anthocyanidins. Tetrahedron 62, 3721–3731 (2006)

    Article  Google Scholar 

  17. Terranova, U., Bowler, D.R.: \(\Delta \) self-consistent field method for natural anthocyanidin dyes. J. Chem. Theory Comput. 9, 3181–3188 (2013)

    Article  Google Scholar 

  18. Hi, S.A.M.Al-Bat, Alaei, I., Sopyan, I.: Natural photosensitizers for dye sensitized solar cells. Int. J. Renew. Energy Res. 3, 138–143 (2013)

    Google Scholar 

  19. Zhaou, H., Wu, L., Gao, Y., Ma, T.: Dye-sensitized solar cells using 20 natural dyes as sensitizers. J. Photochem. Photobiol. A 219, 188–194 (2011)

    Article  Google Scholar 

  20. Aroon, W.S., Saekow, S., Bamrung, V.A.: Density functional theory study on the electronic structure of Monascus dyes as photosensitizer for dye-sensitized solar cells. J. Photochem. Photobiol. A 236, 35–40 (2012)

    Article  Google Scholar 

  21. Meng, S., Ren, J., Kaxiras, E.: Natural dyes adsorbed on \(\text{ TiO }_{2}\) nanowire for photovoltaic applications: enhanced light absorption and ultrafast electron injection. Nano Lett. 8, 3266–3272 (2008)

    Article  Google Scholar 

  22. Narayan, M.R.: Dye sensitized solar cells based on natural photosensitizers. Renew. Sustain. Energy Rev. 16, 208–215 (2012)

    Google Scholar 

  23. Amat, A., Clementi, C., De Angelis, F., Sgamellotti, A., Fantacci, S.: Absorption and emission of the apigenin and luteolin flavonoids: a TDDFT investigation. J. Phys. Chem. A 113, 15118–15126 (2009)

    Article  Google Scholar 

  24. Martsinovich, N., Troisi, A.: Theoretical studies of dye-sensitised solar cells: from electronic structure to elementary processes. Energy Environ. Sci. 4, 4473–4495 (2011)

    Article  Google Scholar 

  25. Guido, C.A., Mennucci, B., Jacquemin, D., Adamo, C.: Planar vs. twisted intramolecular charge transfer mechanism in Nile Red. Phys. Chem. Chem. Phys. 12, 8016–8023 (2010)

    Article  Google Scholar 

  26. Gorelsky, S.I.: SWizard program, Revision 2.0. http://www.sg-chem.net/

  27. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03. Gaussian Inc., Wallingford (2004)

    Google Scholar 

  28. El-Shishtawy, R.M., Asiri, A.M., Aziz, S.G., Elroby, S.A.K.: Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study. J. Mol. Model 20, 2241–2249 (2014)

    Article  Google Scholar 

  29. Reed, A.E., Weinstock, R.B., Weinhold, F.: Natural population analysis. J. Chem. Phys. 83, 735–746 (1985)

    Article  Google Scholar 

  30. Zhang, X.H., Wang, L.Y., Zhai, G.H., Wen, Z.Y., Zhang, Z.X.: The absorption, emission spectra as well as ground and excited states calculations of some dimethine cyanine dyes. J. Mol. Struct. 906, 50–55 (2009)

    Article  Google Scholar 

  31. Pastore, M., Angelis, F.D.: Aggregation of organic dyes on \(\text{ TiO }_{2}\) in dye sensitized solar cells models: an abinitio investigation. ACS Nano 4, 556–562 (2009)

    Article  Google Scholar 

  32. Zhang, C.R., Liu, L., Zhe, J.W., Jin, N.Z., Yuan, L.H., Chen, Y.H., Wei, Z.Q., Wu, Y.Z., Liu, Z.J., Chen, H.S.: Comparative study on electronic structures and optical properties of indoline and triphenylamine dye sensitizers for solar cells. J. Mol. Model. 19, 1553–1563 (2013)

  33. Ham, H.W., Kim, Y.S.: Theoretical study of indoline dyes for dye sensitized solar cells. Thin Solid Films 518, 6558–6563 (2010)

    Article  Google Scholar 

  34. Aroon, W.S., Laopha, S., Chaiamornnugool, P., Tontapha, S., Saekow, S., Amornkitbamrung, V.: DFT and TDDFT study on the electronic structure and photoelectrochemical properties of dyes derived from cochineal and lac insects as photosensitizer for dye-sensitized solar cells. J. Mol. Model. 19, 1407–1415 (2013)

    Article  Google Scholar 

  35. Zhang, C.R., Liu, L., Zhe, J.W., Jin, N.Z., Ma, Y., Yuan, L.H., Zhang, M.L., Wu, Y.Z., Liu, Z.J., Chen, H.S.: The role of the conjugate bridge in electronic structures and related properties of tetrahydroquinoline for dye sensitized solar cells. Int. J. Mol. Sci. 14, 5461–5481 (2013)

    Article  Google Scholar 

  36. Abdullah, M.I., Janjua, M.R.S.A., Mahmood, A., Ali, S., Ali, M.: Quantum chemical designing of efficient sensitizers for dye sensitized solar cells. Bull. Korean Chem. Soc. 34, 2093–2098 (2013)

    Article  Google Scholar 

  37. Liu, Z.: Theoretical studies of natural pigments relevant to dye-sensitized solar cells. J. Mol. Struct. THEOCHEM 862, 44–48 (2008)

    Article  Google Scholar 

  38. Sanchez-de-Armas, R., San-Miguel, M.A., Oviedo, J., Sanz, J.Fdez: Direct vs. indirect mechanisms for electron injection in DSSC. Comput. Theor. Chem. 975, 99–105 (2011)

    Article  Google Scholar 

  39. Mitnik, D.G.: Computational molecular characterization of Coumarin-102. J. Mol. Struct. THEOCHEM 911, 105–108 (2009)

    Article  Google Scholar 

  40. Mohammadi, N., Wang, F.: First -principles study of Carbz-PAHTDDFT dye sensitizer and two Carbz-derived dyes for dye sensitized solar cells. J. Mol. Model. 20, 2177–2185 (2014)

    Article  Google Scholar 

  41. Lin, L.Z., Harnly, J., Zhang, R.W., Fan, X.E., Chen, H.J.: Quantitation of the hydroxycinnamic acid derivatives and the glycosides of flavonols and flavones by UV absorbance after identification by LC-MS. J. Agric. Food Chem. 60, 544–553 (2012)

    Article  Google Scholar 

  42. Irfan, A., Al-sehemi, A.G.: Quantum chemical study in the direction to design efficient donor-bridge-acceptor triphenylamine sensitizers with improved electron injection. J. Mol. Model. 18, 4893–4900 (2012)

    Article  Google Scholar 

  43. Preat, J., Michaux, C., Jacquemin, D., Perpete, E.A.: Enhanced efficiency of organic dye-sensitized solar cells: triphenylamine derivatives. J. Phys. Chem. C 113, 16821–16833 (2009)

    Article  Google Scholar 

  44. Duncan, W.R., Prezhdo, O.V.: Theoretical studies of photoinduced electron transfer in dye-sensitized \(\text{ TiO }_{2}\). Annu. Rev. Phys. Chem. 58, 143–184 (2007)

    Article  Google Scholar 

  45. Lee, M.J., Balanay, M.P., Kim, D.H.: Molecular design of distorted push-pull porphyrins for dye-sensitized solar cells. Theor. Chem. Acc. 131, 1269–1280 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beulah J. M. Rajkumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 72 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megala, M., Rajkumar, B.J.M. Theoretical study of anthoxanthin dyes for dye sensitized solar cells (DSSCs). J Comput Electron 15, 557–568 (2016). https://doi.org/10.1007/s10825-016-0791-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0791-8

Keywords

Navigation