Skip to main content
Log in

Incoherent transport in NEMO5: realistic and efficient scattering on phonons

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this work, the coherent and incoherent transport simulation capabilities of the multipurpose nanodevice simulation tool NEMO5 are presented and applied on transport in tunneling field-effect transistors. The comparison with experimental resistivity data confirms the validity of NEMO5’s phonon-scattering models. Common pitfalls of numerical implementations and the applicability of common approximations of scattering self-energies are discussed. The impact of phonon-assisted tunneling on the performance of TFETs is exemplified with a concrete Si nanowire device. The communication-efficient implementation of self-energies in NEMO5 is demonstrated with a scaling comparison of self-energies solved with blocking and nonblocking MPI-communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors. [Online]. Available: https://www.itrs.net

  2. Mehrotra, S., Kim, S., Kubis, T., Povolotskyi, M., Lundstrom, M.S., Klimeck, G.: Engineering nanowire n-MOSFETs at. IEEE Trans. Electron Devices 60(7), 2171–2177 (2013)

    Article  Google Scholar 

  3. Cui, Y., Zhong, Z., Wang, D., Wang, W.U., Lieber, C.M.: High performance silicon nanowire field effect transistors. Nano Lett. 3(2), 149–152 (2003)

    Article  Google Scholar 

  4. Appenzeller, J., Lin, Y.-M., Knoch, J., Avouris, P.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93(19), 196805 (2004)

    Article  Google Scholar 

  5. Zhu, Y., Hudait, M.K.: Low-power tunnel field effect transistors using mixed As and Sb based heterostructures. Nanotechnol. Rev. 2(6), 637–678 (2013)

    Article  Google Scholar 

  6. Ilatikhameneh, H., Klimeck, G., Rahman, R.: Can homojunction tunnel FETs scale below 10nm? IEEE EDL 37(1), 115–118 (2016)

    Article  Google Scholar 

  7. Sarkar, D., Xie, X., Liu, W., Cao, W., Kang, J., Gong, Y., Kraemer, S., Ajayan, P.M., Banerjee, K.: A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526(7571), 91–95 (2015)

    Article  Google Scholar 

  8. Li, M.O., Esseni, D., Nahas, J.J., Jena, D., Xing, H.G.: Two-dimensional heterojunction interlayer tunneling field effect transistors (Thin-TFETs). IEEE J. Electron Devices Soc. 3(3), 200–207 (2015)

    Article  Google Scholar 

  9. Dewey, G., Chu-Kung, B., Boardman, J., Fastenau, J., Kavalieros, J., Kotlyar, R., Liu, W., Lubyshev, D., Metz, M., Mukherjee, N.: Fabrication, characterization, and physics of III-V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. IEEE Int. Electron Devices Meet. (IEDM). 33–6 (2011)

  10. Mohata, D., Mookerjea, S., Agrawal, A., Li, Y., Mayer, T., Narayanan, V., Liu, A., Loubychev, D., Fastenau, J., Datta, S.: Experimental staggered-source and N+ pocket-doped channel III-V tunnel field-effect transistors and their scalabilities. Appl. Phys. Exp 4(2), 024105 (2011)

    Article  Google Scholar 

  11. Trivedi, A.R., Amir, M.F., Mukhopadhyay, S.: Ultra-low power electronics with Si/Ge tunnel FET. Des. Autom. Test Eur. Conf. Exhib. (DATE) 2014, 1–6 (2014)

    Google Scholar 

  12. Zhao, Q.-T., Richter, S., Schulte-Braucks, C., Knoll, L., Blaeser, S., Luong, G.V., Trellenkamp, S., Schafer, A., Tiedemann, A., Hartmann, J.-M.: Strained Si and SiGe nanowire tunnel FETs for logic and analog applications. IEEE J. Electron Devices Soc. 3(3), 103–114 (2015)

    Article  Google Scholar 

  13. Tomioka, K., Yoshimura, M., Fukui, T.: Steep-slope tunnel field-effect transistors using III-V nanowire/Si heterojunction. 2012 symposium on VLSI technology (VLSIT), pp. 47–48. (2012)

  14. Kobayashi, M., Hiramoto, T.: Experimental study on quantum confinement effects in silicon nanowire metal-oxide-semiconductor field-effect transistors and single-electron transistors. J. Appl. Phys. 103(5), 053709 (2008)

    Article  Google Scholar 

  15. Cui, Y., Lauhon, L.J., Gudiksen, M.S., Wang, J., Lieber, C.M.: Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78(15), 2214–2216 (2001)

    Article  Google Scholar 

  16. Lake, R., Klimeck, G., Bowen, R.C., Fernando, C., Moise, T., Kao, Y., Leng, M.: Interface roughness, polar optical phonons, and the valley current of a resonant tunneling diode. Superlattices Microstruct. 20(3), 279–285 (1996)

    Article  Google Scholar 

  17. Roblin, P., Liou, W.-R.: Three-dimensional scattering-assisted tunneling in resonant-tunneling diodes. Phys. Rev. B 47(4), 2146 (1993)

    Article  Google Scholar 

  18. Kubis, T., Vogl, P.: Assessment of approximations in nonequilibrium Green’s function theory. Phys. Rev. B 83(19), 195304 (2011)

    Article  Google Scholar 

  19. Gmachl, C., Capasso, F., Sivco, D.L., Cho, A.Y.: Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys. 64(11), 1533 (2001)

    Article  Google Scholar 

  20. Luisier, M., Klimeck, G.: Simulation of nanowire tunneling transistors: from the Wentzel-Kramers-Brillouin approximation to full-band phonon-assisted tunneling. J. Appl. Phys. 107(8), 084507 (2010)

    Article  Google Scholar 

  21. Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Influence of phonon scattering on the performance of p-i-n band-to-band tunneling transistors. Appl. Phys. Lett. 92(4), 043125 3 (2008)

    Article  Google Scholar 

  22. Khayer, M.A., Lake, R.K.: Effects of band-tails on the subthreshold characteristics of nanowire band-to-band tunneling transistors. J. Appl. Phys. 110(7), 074508 (2011)

    Article  Google Scholar 

  23. Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000)

    Article  Google Scholar 

  24. Taylor, J., Guo, H., Wang, J.: Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 63(24), 245407 (2001)

    Article  Google Scholar 

  25. Wang, J.-S., Wang, J., Lü, J.: Quantum thermal transport in nanostructures. Eur. Phys. J. B 62(4), 381–404 (2008)

    Article  Google Scholar 

  26. Sadasivam, S., Che, Y., Huang, Z., Chen, L., Kumar, S., Fisher, T.S.: The atomistic Greens function method for interfacial phonon transport. Ann. Rev. Heat Transfer 17, 89–145 (2014)

    Article  Google Scholar 

  27. Steiger, S., Veprek, R.G., Witzigmann, B.: Electroluminescence from a quantum-well LED using NEGF. In: 13th International workshop on computational electronics, IWCE’09 2009, pp. 1–4. (2009)

  28. Stewart, D.A., Leónard, F.: Energy conversion efficiency in nanotube optoelectronics. Nano Lett. 5(2), 219–222 (2005)

    Article  Google Scholar 

  29. Boykin, T.B., Klimeck, G., Oyafuso, F.: Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization. Phys. Rev. B 69(11), 115201 (2004)

    Article  Google Scholar 

  30. Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55(3), 645 (1983)

    Article  Google Scholar 

  31. Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81(12), 7845–7869 (1997)

    Article  Google Scholar 

  32. Anantram, M., Lundstrom, M.S., Nikonov, D.E.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511–1550 (2008)

    Article  Google Scholar 

  33. Springer Materials The Landolt-BörnsteinDatabase

  34. Esposito, A., Frey, M., Schenk, A.: Quantum transport including nonparabolicity and phonon scattering: application to silicon nanowires. J. Comput. Electron. 8(3 4), 336–348 (2009)

    Article  Google Scholar 

  35. Datta, S.: A simple kinetic equation for steady-state quantum transport. J. Phys. Condens. Matter 2(40), 8023 (1990)

    Article  Google Scholar 

  36. Mahan, G.D.: Many-Particle Physics. Springer, New York (2013)

    Google Scholar 

  37. Steiger, S., Povolotskyi, M., Park, H.-H., Kubis, T., Klimeck, G.: Nemo5: a parallel multiscale nanoelectronics modeling tool. IEEE Trans Nano 10, 1464 (2011)

    Article  Google Scholar 

  38. Niquet, Y.-M., Nguyen, V.-H., Triozon, F., Duchemin, I., Nier, O., Rideau, D.: Quantum calculations of the carrier mobility: methodology. Matthiessens rule, and comparison with semi-classical approaches. J. Appl. Phys. 115(5), 054512 (2014)

    Article  Google Scholar 

  39. [Online].Available: http://www.ncsa.illinois.edu/enabling/bluewaters

  40. Luisier, M.: A parallel implementation of electron-phonon scattering in nanoelectronic devices up to 95k cores. In: 2010 International conference for high performance computing, networking, storage and analysis (SC), pp. 1–11. (2010)

  41. Thurber, W. R.: The relationship between resistivity and dopant density for phosphorus-and boron-doped silicon, 400(64). US Department of Commerce, National Bureau of Standards, (1981)

  42. Learning and research in the cloud” Published online 07 November 2013, Nature Nanotechnology, 8, 786–789 (2013). doi:10.1038/nnano.2013.231

  43. nanoHUB.org: cloud-based services for nanoscale modeling, simulation, and education, Nanotechnology Reviews, 2(1), 107–117 (2013). doi:10.1515/ntrev-2012-0043. ISSN (Online) 2191-9097, ISSN (Print) 2191-9089

  44. https://nanohub.org/groups/nemo5distribution

Download references

Acknowledgments

The use of nanoHUB.org computational resources operated by the Network for Computational Nanotechnology, funded by the US National Science Foundation under Grant Nos. EEC-0228390, EEC-1227110, EEC-0228390, EEC-0634750, OCI-0438246, OCI-0832623, and OCI-0721680, is gratefully acknowledged. NEMO5 developments were critically supported by an NSF Peta-Apps award OCI-0749140 and by Intel Corp. This work was supported in part by funding from the Semiconductor Research Corporation’s Global Research Collaboration (GRC) (2653.001), and Member Specific Research Intel (MSR-Intel) (2434.001). Additional funding was provided by the Semiconductor Research Corporation membership in the Network for Computational Nanotechnology. This research is part of the Blue Waters’ sustained-petascale computing project, which is supported by the National Science Foundation (award number ACI 1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This work is also part of the “Accelerating Nano-scale Transistor Innovation with NEMO5 on Blue Waters” PRAC allocation support by the National Science Foundation (award number OCI-0832623). This research was supported in part through computational resources provided by Information Technology at Purdue University, West Lafayette, Indiana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Charles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charles, J., Sarangapani, P., Golizadeh-Mojarad, R. et al. Incoherent transport in NEMO5: realistic and efficient scattering on phonons. J Comput Electron 15, 1123–1129 (2016). https://doi.org/10.1007/s10825-016-0845-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0845-y

Keywords

Navigation