Skip to main content

Advertisement

Log in

Analog and RF performance of doping-less tunnel FETs with \(\hbox {Si}_{0.55} \hbox {Ge}_{0.45}\) source

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper reports studies of a doping-less tunnel field-effect transistor (TFET) with a \(\hbox {Si}_{0.55} \hbox {Ge}_{0.45}\) source structure aimed at improving the performance of charge-plasma-based doping-less TFETs. The proposed device achieves an improved ON-state current (\(I_{{\mathrm{ON}}} \sim {4.88} \times {10}^{-5}\,{\mathrm{A}}/\upmu {\mathrm{m}}\)), an \(I_\mathrm{ON}/I_\mathrm{OFF}\) ratio of \({6.91} \times {10}^{12}\), an average subthreshold slope (\(\hbox {AV-SS}\)) of \(\sim \) \({64.79}\,{\mathrm{mV/dec}}\), and a point subthreshold slope (SS) of 14.95 mV/dec. This paper compares the analog and radio of frequency (RF) parameters of this device with those of a conventional doping-less TFET (DLTFET), including the transconductance (\(g_{{\mathrm{m}}}\)), transconductance-to-drain-current ratio \((g_\mathrm{m}/I_\mathrm{D})\), output conductance \((g_\mathrm{d})\), intrinsic gain (\(A_{{\mathrm{V}}}\)), early voltage (\(V_{{\mathrm{EA}}}\)), total gate capacitance (\( C_{{\mathrm{gg}}}\)), and unity-gain frequency (\(f_{{\mathrm{T}}}\)). Based on the simulated results, the \(\hbox {Si}_{0.55}\hbox {Ge}_{0.45}\)-source DLTFET is found to offer superior analog as well as RF performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bhuwalka, K.K., Schulze, J., Eisele, I.: Performance Enhancement of Vertical Tunnel Field-Effect Transistor with SiGe in the \(\delta \)p+ layer. Jpn. J. Appl. Phys. 43(7A), 4073–4078 (2004)

    Article  Google Scholar 

  2. Ionescu, A.M., Riel, H.: Tunnel Field-Effect Transistors as Energy Efficient Electronic Switches. Nature 479(7373), 329–337 (2011)

    Article  Google Scholar 

  3. Bhuwalka, K.K., Schulze, J., Eisele, I.: Scaling the vertical Tunnel FET with Tunnel Bandgap Modulation and Gate Work Function Engineering. IEEE Trans. Electron Devices 52(5), 909–917 (2005)

    Article  Google Scholar 

  4. Choi, W.Y., Park, B.G., Lee, J.D.: Tunneling Field-Effect Transistors (TFETs) with Subthreshold Swing (SS) less than 60 mV/dec. IEEE Electron Device Letters 28(8), 743–745 (2007)

    Article  Google Scholar 

  5. Colinge, J.-P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O’Neill, B., Blake, A., White, M., Kelleher, A.M., McCarthy, B., Murphy, R.: Nanowire Transistors without Junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)

    Article  Google Scholar 

  6. Aydin, C., Zaslavsky, A., Luryi, S., Cristoloveanu, S., Mariolle, D., Fraboulet, D., et al.: Lateral Interband Tunneling Transistor in Silicon-on-Insulator. Appl. Phys. Lett. 84(10), 1780–1782 (2004)

    Article  Google Scholar 

  7. Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Performance Comparison between P-I-N Tunneling Transistors and conventional MOSFETs. IEEE Trans Electron Devices 56(3), 456–465 (2009)

    Article  Google Scholar 

  8. Boucart, K., Ionescu, A.M.: Double Gate Tunnel FET with High-K Gate Dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)

    Article  Google Scholar 

  9. Lou, H., Lining, Zhang, Yunxi, Zhu, Xinnan, Lin, Shengqi, Yang, Jin, He, Chan, M.: A Junctionless Nanowire Transistor With a Dual-Material Gate. IEEE Transaction on Electron Devices 59(7), 1829–1836 (2012)

    Article  Google Scholar 

  10. Beneventi, G.B., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Dual-Metal-Gate InAs Tunnel FET with Enhanced Turn-On Steepness and High On-Current. IEEE Transactions on Electron Devices 61(3), 776–784 (2014)

  11. Narang, Rakh, Saxena, Manoj, Gupta, Gupta, R.S., Mridula, Gupta: Effect of Temperature and Gate Stack on the Linearity and Analog Performance of Double Gate Tunnel FET, pp. 466–475. Springer Berlin Heidelberg, 197, (2011)

  12. Zhao, Q.T., Hartmann, J.-M., Mantl, S.: An Improved Si Tunnel Field Effect Transistor with a Buried Strained Si\(_{1-x}\)Ge\(_{x}\) Source. Electron Device Letters, IEEE 32(11), 1480–1482 (2011)

    Article  Google Scholar 

  13. Wang, Pei-Yu., Tsui, Bing-Yue: Si1-xGex Epitaxial Tunnel Layer Structure for P-Channel Tunnel FET Improvement. IEEE Transaction on Electron Devices 60(12), 4098–4104 (2013)

    Article  Google Scholar 

  14. Damrongplasit, N., Kim’, S.H., Liu, T.J.K.: Study of Random Dopant Fluctuation Induced Variability in the raised-Ge-Source TFET. IEEE Electron Device Lett 34(2), 184–186 (2013)

    Article  Google Scholar 

  15. Rajasekharan, B., Hueting, R.J.E., Salm, C., van Hemert, T., Wolters, R.A.M., Schmitz, J.: Fabrication and Characterization of the Charge-Plasma Diode. IEEE Electron Device Letters 31(6), 528–530 (2010)

    Article  Google Scholar 

  16. Anand, Sunny, Intekhab Amin, S., Sarin, R.K.: Analog Performance Investigation of Dual Electrode Based Doping-Less Tunnel FET”. Journal of Computational Electronics 15(1), 94–103 (2016)

    Article  Google Scholar 

  17. Jagadesh Kumar, M.: Doping-Less Tunnel Field Effect Transistor: Design and Investigation. IEEE Transactions on Electron Devices 60(10), 3285–3290 (2013)

    Article  Google Scholar 

  18. Sunny, anand, Intekhab Amin, S., Sarin, R.K.: Performance Analysis of Charge Plasma based Dual Electrode Tunnel FET. Journal of semiconductors 37(5), 054003-1-8 (2016)

    Google Scholar 

  19. Sunny, Anand, Sarin, R.K.: An Analysis on Ambipolar Reduction Techniques for Charge Plasma Based Tunnel FETs. Journal of Nanoelectronics and Optoelectronics 11(4), 543–550 (2016)

    Article  Google Scholar 

  20. Walke, A.M., Vandooren, A., Rooyackers, R., Leonelli, D., Hikavyy, A., Loo, R., Verhulst, A.S., Ka, Kuo-Hsing, Huyghebaert, C., Groeseneken, G., Rao, V.R., Bhuwalka, K.K., Heyns, M.M., Collaert, N., Thean, A.V.-Y.: Fabrication and Analysis of a Si/Si\(_{0.55 }\)Ge\(_{0.45}\) Heterojunction Line Tunnel FET. IEEE Transactions on Electron Devices 61(3), 707–715 (2014)

    Article  Google Scholar 

  21. ATLAS Device Simulation Software: Silvaco Int. Santa Clara, CA, USA (2012)

  22. Omura, Y., Horiguchi, S., Tabe, M., Kishi, K., et al.: Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs. IEEE Trans. Electron Devices 14(12), 569 (1993)

    Article  Google Scholar 

  23. Kilchytska, V., Neve, A., Vancaillie, L., Levacq, D., Adriaensen, S., van Meer, H., de Meyer, K., Raynaud, C., Dehan, M., Raskin, J.P., Flandre, D.: Influence of Device Engineering on The Analog and RF of SOI MOSFETs. IEEE Transactions on Electron Devices 50(3), 577–588 (2003)

    Article  Google Scholar 

  24. Patel, Nayan, Ramesha, A., Mahapatra, Santanu: Drive current boosting of n-type tunnel FET with strained SiGe layer at source. Microelectronics Journal 39, 1671–1677 (2008)

    Article  Google Scholar 

  25. Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: Effective Capacitance and Drive Current for Tunnel FET (TFET) CV/I Estimation. IEEE Transactions on Electron Devices 56(9), 2092–2098 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunny Anand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, S., Sarin, R.K. Analog and RF performance of doping-less tunnel FETs with \(\hbox {Si}_{0.55} \hbox {Ge}_{0.45}\) source. J Comput Electron 15, 850–856 (2016). https://doi.org/10.1007/s10825-016-0859-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0859-5

Keywords

Navigation