Skip to main content
Log in

Self-consistent quantum drift-diffusion model for multiple quantum well IMPATT diodes

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, the authors have presented a self-consistent quantum drift-diffusion model for multiple quantum well (MQW) impact avalanche transit time (IMPATT) diodes. The bound states in MQWs have been taken into account by self-consistent solutions of the coupled classical drift-diffusion (CLDD) equations and time-independent Schrödinger equations associated with both the conduction and valence bands. The static and high-frequency properties of MQW DDR IMPATTs based on Si\(\sim \)3C-SiC material system designed to operate near 94-GHz atmospheric window have been studied by means of the above-mentioned self-consistent solutions of coupled CLDD equations and Schrödinger equations followed by a well-established double-iterative field maximum computational technique. A symmetric and two complementary asymmetric doping profiles for the proposed structures have been taken into account for the present study. The RF power outputs of Si\(\sim \)3C-SiC MQW DDR IMPATTs near 94 GHz obtained from the simulation are compared with the experimentally obtained power outputs of flat DDR IMPATT diodes based on Si, GaAs, and InP at the same frequency band. It is observed that Si\(\sim \)3C-SiC MQW DDR IMPATTs are capable of delivering significantly higher RF power compared with IMPATTs based on the above-mentioned materials especially when the doping concentrations of 3C-SiC layers are kept higher than those of the Si layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Midford, T.A., Bernick, R.L.: Millimeter wave CW IMPATT diodes and oscillators. IEEE Trans. Microwave Theory Tech. Soc. 27, 483–492 (1979)

    Article  Google Scholar 

  2. Luy, J.F., Casel, A., Behr, W., Kasper, E.: A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans. Electron. Devices 34, 1084–1089 (1987)

    Article  Google Scholar 

  3. Eisele, H.: Selective etching technology for 94 GHz, GaAs IMPATT diodes on diamond heat sinks. Solid State Electron. 32(3), 253–257 (1989)

    Article  Google Scholar 

  4. Eisele, H., Chen, C.C., Munns, G.O., Haddad, G.I.: The potential of InP IMPATT diodes as high-power millimeter-wave sources: first experimental results. IEEE MTT-S Int. Microw. Symp. Digest. 2, 529–532 (1996)

    Google Scholar 

  5. Acharyya, A., Banerjee, J.P.: Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl. Nanosci. 4, 1–14 (2014)

    Article  Google Scholar 

  6. Acharyya, A., Banerjee, S., Banerjee, J.P.: Potentiality of semiconducting diamond as base material of millimeter-wave and terahertz IMPATT devices. J. Semicond. 35(3), 034005-1–034005-11 (2014)

    Article  Google Scholar 

  7. Acharyya, A., Banerjee, J.P.: Studies on anisotype \(\text{ Si/Si }_{1-x}\text{ Ge }_{x}\) heterojunction DDR IMPATTs: efficient millimeter-wave sources at 94 GHz window. IETE J. Res. 59(4), 424–432 (2013)

    Article  Google Scholar 

  8. Banerjee, S., Acharyya, A., Banerjee, J.P.: Noise performance of heterojunction DDR MITATT devices based on Si\(\sim \text{ Si }_{1-x}\text{ Ge }_{x}\) at W-band. Act. Passive Electron. Compon. 2013, 1–7 (2013)

    Article  Google Scholar 

  9. Banerjee, S., Acharyya, A., Mitra, M., Banerjee, J. P.: Large-signal properties of 3C-SiC/Si heterojunction DDR IMPATT devices at terahertz frequencies. In: The 34th PIERS in Stockholm, Sweden, pp. 462–467 (2013)

  10. Lippens, D., Vanbesien, O., Lambert, B.: Multiquantum well GaA/AlGaAs structures applied to avalanche transit time devices. J. Phys. C5, 487–490 (1987)

    Google Scholar 

  11. Meng, C., Fetterman, H.R.: A theoretical analysis of millimeter-wave GaAs/A1GaAs multiquantum well transit time devices by the lucky drift model. Solid-State Electron. 36(3), 435–442 (1993)

    Article  Google Scholar 

  12. Yih, P.H., Li, J.P., SteckI, A.J.: SiC/Si heterojunction diodes by self-selective and by blanket reapid thermal chemical vapor deposition. IEEE Trans. Electron. Devices 41(3), 281–287 (1994)

    Article  Google Scholar 

  13. Banerjee, S., Acharyya, A., Banerjee, B., Tripathi, A., Das, A., Singh, A., Banerjee, J.P.: Si/3C-SiC multiquantum Well IMPATT diodes. In: Proceedings of National Conference on Electrical, Electronics, and Computer Engineering (CALCON) 2014, IEEE, Park Prime, Kolkata, India, pp. 1–5, 7–8 Nov 2015

  14. Acharyya, A., Goswami, J., Banerjee, S., Banerjee, J.P.: Quantum corrected drift-diffusion model for terahertz IMPATTs based on different semiconductors. J. Comput. Electron. 14, 309–320 (2015)

    Article  Google Scholar 

  15. Roy, S.K., Banerjee, J.P., Pati, S.P.: A computer analysis of the distribution of high frequency negative resistance in the depletion layer of IMPATT diodes. In: Proceedings 4th conference on numerical analyses of semiconductor devices (NASECODE IV), Dublin, Boole, pp. 494–500 (1985)

  16. Acharyya, A.: RF Performance of IMPATT Sources and Their Optical Control. Lambert Academic Publishing, Saarbrücken (2015)

    Google Scholar 

  17. Sorokin, M.S., Arkhipov, A.V.: Analysis of the thermal conditions of pulse impact avalanche transit-time diodes. J. Nano-Electron. Phys. 1(4), 76–80 (2009)

    Google Scholar 

  18. Blue, J.L.: Approximate large-signal analysis of IMPATT oscillators. Bell Syst. Tech. J. 48, 383–396 (1968)

    Article  Google Scholar 

  19. Sze, S.M., Ryder, R.M.: Microwave avalanche diodes. Proc. IEEE, Special Issue on Microwave Semiconductor Devices 59, 1140–1154 (1971)

    Google Scholar 

  20. Electronic Archive: New semiconductor materials, characteristics and properties. http://www.ioffe.rssi.ru/SVA/NSM/Semicond/index.html. Accessed on Feb 2016

  21. Zeghbroeck, B.V.: Principles of Semiconductor Devices. Colorado Press, Denver (2011)

    Google Scholar 

  22. Grant, W.N.: Electron and hole ionization rates in epitaxial silicon. Solid State Electron. 16, 1189–1203 (1973)

    Article  MathSciNet  Google Scholar 

  23. Canali, C., Ottaviani, G., Quaranta, A.A.: Drift velocity of electrons and holes and associated anisotropic effects in silicon. J. Phys. Chem. Solids 32, 1707–1720 (1971)

    Article  Google Scholar 

  24. Bellotti, E., Nilsson, H.E., Brennan, K.F., Ruden, P.P.: Ensemble Monte Carlo calculation of hole transport in bulk 3C-SiC. J. Appl. Phys. 85(6), 3211–3217 (1999)

    Article  Google Scholar 

  25. Mickevicius, R., Zhao, J.H.: Monte Carlo study of electron transport in SiC. J. Appl. Phys. 83(6), 3161–3167 (1998)

    Article  Google Scholar 

  26. Kane, E.O.: Theory of tunneling. J. Appl. Phys. 32, 83–91 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  27. Elta, M. E.: The effect of mixed tunneling and avalanche breakdown on microwave transit-time diodes. Ph.D. dissertation, Electron Physics Lab., Univ. of Mich., Ann Arbor, MI, Technical report (1978)

  28. Persson, C., Lindefelt, U.: Relativistic band structure calculation of cubic and hexagonal SiC polytypes. J. Appl. Phys. 82(11), 5496–5508 (1997)

    Article  Google Scholar 

  29. Acharyya, A., Mukherjee, M., Banerjee, J.P.: Effects of tunnelling current on mm-wave IMPATT devices. Int. J. Electron. 102(9), 1429–1456 (2015)

    Article  Google Scholar 

  30. Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1981)

    Google Scholar 

  31. Doudlas, J., Yuan, Y.: Finite difference method for the transient behavior of a semiconductor device. IMA 286, 1–20 (1987)

    Google Scholar 

  32. Christodoulou, N.S.: An algorithm using Runge–Kutta methods of orders 4 and 5 for systems of ODEs. Int. J. Numer. Methods Appl. 2(1), 47–57 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Stern, F.: Iteration methods for calculating self-consistent fields in semiconductor inversion layers. J. Comput. Phys. 6(1), 56–67 (1970)

    Article  MATH  Google Scholar 

  34. Roy, S. K., Sridharan, M., Ghosh, R., Pal, B. B.: Computer method for the DC field and carrier current profiles in the IMPATT device starting from the field extremum in the depletion layer. In: Proceedings of the 1st Conference on Numerical Analysis of Semiconductor Devices (NASECODE I), Dublin, Ireland, pp. 266–274 (1979)

  35. Scharfetter, L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron. Devices 6(1), 64–77 (1969)

    Article  Google Scholar 

  36. Blakey, P.A.: Propagating avalanche-zone mode for high-efficiency GaAs lo-hi-lo IMPATT structures. Electron. Lett. 11(25), 630–631 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritra Acharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, M., Ghosh, S. & Acharyya, A. Self-consistent quantum drift-diffusion model for multiple quantum well IMPATT diodes. J Comput Electron 15, 1370–1387 (2016). https://doi.org/10.1007/s10825-016-0894-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0894-2

Keywords

Navigation