Skip to main content
Log in

Investigation of electronic and optical properties of quaternary vanadate Cu2LiVO4 by density functional calculations

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Earth-abundant quaternary chalcogenides are promising light-harvesting materials in the application of thin-film solar cells. In this work, the ternary cuprous vanadate Cu3VO4 and quaternary compounds Cu2LiVO4 are investigated by using first-principles calculations. The Cu3VO4 is predicted to show the indirect bandgap, which originates from full occupied Cu 3d10 and V 3d0 orbitals with contribution from O 2p states. The quaternary compounds Cu2LiVO4 are predicted to have larger bandgaps than that of Cu3VO4. In addition to the stannite Cu2LiVO4, other Cu2LiVO4 are all indirect bandgap type similar to the Cu3VO4. The calculated optical properties show the absorption capacity in the visible range, indicating that these vanadate compounds could be potential materials in optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhou, H., Hsu, W.-C., Duan, H.-S., et al.: CZTS nanocrystals: a promising approach for next generation thin film photovoltaics. Energy Environ. Sci. 6, 2822 (2013). https://doi.org/10.1039/c3ee41627e

    Article  Google Scholar 

  2. Fan, F.-J., Wu, L., Yu, S.-H.: Energetic I–III–VI 2 and I 2 –II–IV–VI 4 nanocrystals: synthesis, photovoltaic and thermoelectric applications. Energy Environ. Sci. 7, 190–208 (2014). https://doi.org/10.1039/C3EE41437J

    Article  Google Scholar 

  3. Bag, S., Gunawan, O., Gokmen, T., et al.: Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency. Energy Environ. Sci. 5, 7060 (2012). https://doi.org/10.1039/c2ee00056c

    Article  Google Scholar 

  4. Wei, H., Ye, Z., Li, M., et al.: Tunable band gap Cu2ZnSnS4xSe4(1 − x) nanocrystals: experimental and first-principles calculations. CrystEngComm 13, 2222 (2011). https://doi.org/10.1039/c0ce00779j

    Article  Google Scholar 

  5. Jackson, P., Hariskos, D., Lotter, E., et al.: New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20%. Prog. Photovolt: Res. Appl. 19, 894–897 (2011). https://doi.org/10.1002/pip.1078

    Article  Google Scholar 

  6. Tablero, C.: Electronic and photon absorber properties of cr-doped Cu 2ZnSnS 4. J. Phys. Chem. C 116, 23224–23230 (2012). https://doi.org/10.1021/jp306283v

    Article  Google Scholar 

  7. Crespo, C.T.: Microscopic optical absorption, analysis, and applications of famatinite Cu3SbS4. J. Phys. Chem. C 120, 7959–7965 (2016). https://doi.org/10.1021/acs.jpcc.6b00316

    Article  Google Scholar 

  8. Sahoo, P.P., Maggard, P.A.: Crystal chemistry, band engineering, and photocatalytic activity of the LiNb3O8-CuNb3O8 solid solution. Inorg. Chem. 52, 4443–4450 (2013). https://doi.org/10.1021/ic302649s

    Article  Google Scholar 

  9. Brik, M.G., Piasecki, M., Kityk, I.V.: Structural, electronic, and optical features of CuAl(S1-xSex)2 solar cell materials. Inorg. Chem. 53, 2645–2651 (2014). https://doi.org/10.1021/ic403030w

    Article  Google Scholar 

  10. Xu, T., Chen, L., Guo, Z., Ma, T.: Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Phys. Chem. Chem. Phys. 18, 27026–27050 (2016). https://doi.org/10.1039/C6CP04553G

    Article  Google Scholar 

  11. Yang, J., Wang, D., Zhou, X., Li, C.: A theoretical study on the mechanism of photocatalytic oxygen evolution on BiVO4 in aqueous solution. Chem. A Eur. J. 19, 1320–1326 (2013). https://doi.org/10.1002/chem.201202365

    Article  Google Scholar 

  12. Walsh, A., Yan, Y., Huda, M.N., et al.: Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals. Chem. Mater. 21, 547–551 (2009). https://doi.org/10.1021/cm802894z

    Article  Google Scholar 

  13. Cooper, J.K., Gul, S., Toma, F.M., et al.: Electronic structure of monoclinic BiVO4. Chem. Mater. 26, 5365–5373 (2014). https://doi.org/10.1021/cm5025074

    Article  Google Scholar 

  14. Barrier, N., Hervieu, M., Nguyen, N., Raveau, B.: Example of unusual tetrahedral coordination of Cu(I) in oxides: Cu3VO4. Solid State Sci. 10, 137–140 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.09.009

    Article  Google Scholar 

  15. Trimarchi, G., Peng, H., Im, J., et al.: Using design principles to systematically plan the synthesis of hole-conducting transparent oxides: Cu3VO4 and Ag 3VO4 as a case study. Phys. Rev. B Condens. Matter Mater. Phys. 84, 1–14 (2011). https://doi.org/10.1103/PhysRevB.84.165116

    Article  Google Scholar 

  16. Sahoo, P.P., Zoellner, B., Maggard, P.A.: Optical, electronic, and photoelectrochemical properties of the p-type Cu3−x VO 4 semiconductor. J. Mater. Chem. A 3, 4501–4509 (2015). https://doi.org/10.1039/C4TA04876H

    Article  Google Scholar 

  17. Liao, Y., Liu, H., Zhou, W., et al.: Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139, 6693–6699 (2017). https://doi.org/10.1021/jacs.7b01815

    Article  Google Scholar 

  18. Zhao, X.-G., Yang, D., Sun, Y., et al.: Cu–In halide perovskite solar absorbers. J. Am. Chem. Soc. 139, 6718–6725 (2017). https://doi.org/10.1021/jacs.7b02120

    Article  Google Scholar 

  19. Giannozzi, P., Baroni, S., Bonini, N., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  20. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  21. Dudarev, S.L., Botton, G.A., Savrasov, S.Y., et al.: Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B Condens. Matter Mater. Phys. 57, 1505–1509 (1998). https://doi.org/10.1103/PhysRevB.57.1505

    Article  Google Scholar 

  22. Pack, J.D., Monkhorst, H.J.: “Special points for Brillouin-zone integrations”—a reply. Phys. Rev. B Condens. Matter Mater. Phys. 16, 1748–1749 (1977). https://doi.org/10.1103/PhysRevB.16.1748

    Article  Google Scholar 

  23. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  24. Rondiya, S., Wadnerkar, N., Jadhav, Y., et al.: Structural, electronic, and optical properties of Cu2NiSnS4: a combined experimental and theoretical study toward photovoltaic applications. Chem. Mater. 29, 3133–3142 (2017). https://doi.org/10.1021/acs.chemmater.7b00149

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the scientific research start-up fund of Chongqing University of Technology (2017ZD51).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Zheng, G. Investigation of electronic and optical properties of quaternary vanadate Cu2LiVO4 by density functional calculations. J Comput Electron 18, 1–5 (2019). https://doi.org/10.1007/s10825-018-1270-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1270-1

Keywords

Navigation