Skip to main content
Log in

Noise performance of avalanche transit-time devices in the presence of acoustic phonons

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Through this paper, the effects of acoustic phonons on the noise performance of avalanche transit-time devices have been investigated and reported. For this study, a double-drift-region silicon-based impact avalanche transit-time diode has been considered at operating frequencies of 94 GHz, 140 GHz and 220 GHz. To analyze the acoustic phonon effects on noise performance, the interactions of charge carriers with acoustic deformation potential and piezoelectric acoustic phonons have been considered in addition to all possible types of scattering events. These effects have been analyzed through a numerical expression for the ionization rate of charge carriers and incorporated in the noise analysis. The noise performance is evaluated in terms of noise spectral density (NSD) and noise measure (NM). The results show that due to acoustic phonons, values of NSD and NM significantly increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sze, S.M.: IMPATT diodes. In: Sze, S.M., Ng, K.K. (eds.) Physics of Semiconductor Devices, 3rd edn, pp. 484–486. Willey, New Jersey (2007)

    Google Scholar 

  2. Kuvas, R.L.: Noise in IMPATT diodes: intrinsic properties. IEEE Trans. Electron Devices 19, 220–233 (1972)

    Article  Google Scholar 

  3. Gummel, H.K., Blue, J.L.: A small signal theory of avalanche noise in IMPATT diodes. IEEE Trans. Electron Devices 14, 569–580 (1967)

    Article  Google Scholar 

  4. Hines, M.E.: Noise theory of read type avalanche diode. IEEE Trans. Electron Devices 13, 158–163 (1966)

    Article  Google Scholar 

  5. Mishra, J.K., Panda, A.K., Dash, G.N.: An extremely low-noise heterojunction IMPATT. IEEE Trans. Electron Devices 44, 2143–2148 (1997)

    Article  Google Scholar 

  6. Tager, A.S.: Current fluctuations in semiconductor (dielectric) under the conditions of impact ionization and avalanche breakdown. Sov. Phys. Solid State 4, 1919–1925 (1965)

    Google Scholar 

  7. Acharyya, A.: Diminution of impact ionization rate of charge carriers in semiconductors due to acoustic phonon scattering. Appl. Phys. A 123, 629 (2017). https://doi.org/10.1007/s00339-017-1245-2

    Article  Google Scholar 

  8. Bandyopadhyay, P.K., et al.: Large-signal characterization of millimeter-wave IMPATTs: effect of reduced impact ionization rate of charge carriers due to carrier–carrier interactions. J. Comput. Electron. 15, 646–656 (2016)

    Article  Google Scholar 

  9. Bandyopadhyay, P.K., et al.: Millimeter-wave and terahertz IMPATT sources: influence of inter-carrier interactions. Int. J. Nanopart. (2018). https://doi.org/10.1504/IJNP.2018.092683

    Google Scholar 

  10. Bandyopadhyay, P.K., et al.: Influence of carrier–carrier interactions on the noise performance of millimeter-wave IMPATTs. IETE J. Res. (2018). https://doi.org/10.1080/03772063.2018.1433078

    Google Scholar 

  11. Acharyya, A., Banerjee, J.P.: A generalized analytical model based on multistage scattering phenomena for estimating the impact ionization rate of charge carriers in semiconductors. J. Comput. Electron. 13, 917–924 (2014)

    Article  Google Scholar 

  12. Midday, S., Bhattacharya, D.P.: Energy loss in degenerate semiconductors due to inelastic interaction with acoustic and piezoelectric phonons at low lattice temperatures. Phys. Scr. 83, 025702 (2011)

    Article  Google Scholar 

  13. Acharyya, A., Chatterjee, S., Das, A., et al.: Additional confirmation of a generalized analytical model based on multistage scattering phenomena to evaluate the ionization rates of charge carriers in semiconductors. J. Comput. Electron. 15, 34–39 (2016)

    Article  Google Scholar 

  14. Ghivela, G.C., Sengupta, J.: Effect of acoustic phonon scattering on impact ionization rate of electrons in monolayer graphene nanoribbons. Appl. Phys. A 124, 762 (2018). https://doi.org/10.1007/s00339-018-2193-1

    Article  Google Scholar 

  15. Harrison, W.A., Klepeis, J.E.: Dielectric screening in semiconductors. Phys. Rev. B 37, 864–873 (1988)

    Article  Google Scholar 

  16. Sengupta, J., Ghivela, G.C., Gajbhiye, A., Mitra, M.: Measurement of noise and efficiency of 4H-SiC IMPATT diode at Ka band. Int. J. Electron. Lett. 4, 134–140 (2016)

    Article  Google Scholar 

  17. Ghivela, G.C., Sengupta, J., Mitra, M.: Ka band noise comparison for Si, Ge, GaAs, InP, WzGaN, 4H-SiC based IMPATT diode. Int. J. Electron. Lett. (2018). https://doi.org/10.1080/21681724.2018.1460869

    Google Scholar 

  18. Ghosh, M., et al.: Noise performance of 94 GHz multiple quantum well double-drift region IMPATT sources. J. Act. Passive Electron Devices 13, 185–194 (2018)

    Google Scholar 

  19. Acharyya, A., Mukherjee, M., Banerjee, J.P.: Noise performance of millimeter-wave silicon based mixed tunneling avalanche transit time (MITATT) diode. Int. J. Electrical Electron. Eng. 4, 577–584 (2010)

    Google Scholar 

  20. Acharyya, A., Banerjee, S., Banerjee, J.P.: Effect of photo-irradiation on the noise properties of double-drift silicon MITATT device. Int. J. Electron. 101, 1270–1286 (2014)

    Article  Google Scholar 

  21. Ghivela, G.C., Sengupta, J.: Prospects of impact avalanche transit time diode based on chemical vapor deposited diamond substrate. J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-018-6821-5

    Google Scholar 

  22. Electronic archive: new semiconductor materials, characteristics and properties. http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/bandstr.html (2013). Accessed 20 May 2018

  23. Qiu, B., et al.: First principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon. EPL 109, 1–5 (2015)

    Article  Google Scholar 

  24. Grant, W.N.: Electron and hole ionization rates in epitaxial silicon. Solid State Electron. 16, 1189–1203 (1973)

    Article  Google Scholar 

  25. Cartier, et al.: Impact ionization in silicon. Appl. Phys. Lett. 62, 3339–3341 (1993)

    Article  Google Scholar 

  26. Woods, M.H., Johnson, W.C., Lampert, M.A.: Use of a Schottky barrier to measure impact ionization coefficients in semiconductors. Solid State Electron. 16, 381–394 (1973)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Electronics and Communication Engineering, VNIT, Nagpur, India. The authors are grateful to the Ministry of Human Resource Development, Government of India, for providing research assistantship to G.C. Ghivela.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish Chandra Ghivela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghivela, G.C., Sengupta, J. Noise performance of avalanche transit-time devices in the presence of acoustic phonons. J Comput Electron 18, 222–230 (2019). https://doi.org/10.1007/s10825-018-1289-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1289-3

Keywords

Navigation