Skip to main content
Log in

The design and analysis of a CMOS-compatible silicon photonic ON–OFF switch based on a mode-coupling mechanism

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A directional-coupler-based 1 \(\times\) 1 silicon-on-insulator photonic ON–OFF switch with a complementary metal–oxide–semiconductor (CMOS)-compatible driving voltage is proposed in this paper. The directional coupling of the switch is accomplished by a carrier injection method with the help of a P-i-N diode phase shifter. The advantage of using the directional coupler as a switch is its smaller layout requirement, which makes it more suitable for use in integrated photonic applications. The ON–OFF switch has potential applications in programmable photonic switch fabrics, where the OFF-state behavior is used to prevent the input from being propagated to the output. The proposed switch offers a wide range of cross power-coupling coefficient \((\kappa ^2)\) values, ranging from 0 to 0.3 for the ON-state and from 0.79 to 1 for the OFF-state. The finite-difference beam propagation and two-dimensional (2D) finite-difference time-domain methods are used for photonic simulations. The results are compared analytically using the coupled mode theory with the help of the MATLAB software package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lee, B.G., Dupuis, N.: Silicon photonic switch fabrics: technology and architecture. J. Light. Technol. 37(1), 6–20 (2019)

    Article  Google Scholar 

  2. Dong, P., et al.: Submilliwatt, ultrafast and broadband electro-optic silicon switches. Opt. Express 18(24), 25225 (2010)

    Article  Google Scholar 

  3. Zhou, H., et al.: Performance influence of carrier absorption to the Mach–Zehnder-interference based silicon optical switches. Opt. Express 17(9), 7043 (2009)

    Article  Google Scholar 

  4. Van Campenhout, J., Green, W.M., Assefa, S., Vlasov, Y.A.: Low-power, 2\(\times\)2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Opt. Express 17(26), 24020 (2009)

    Article  Google Scholar 

  5. Rylyakov, A.V., et al.: Design and fabrication of low-insertion-loss and low-crosstalk broadband 2\(\times\)2 Mach–Zehnder silicon photonic switches. J. Light. Technol. 33(17), 3597–3606 (2015)

    Article  Google Scholar 

  6. Lu, L., Zhou, L., Li, Z., Li, X., Chen, J.: Broadband 4\(\times\)4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers. IEEE Photonics J. 7(1), 1–8 (2015)

    Article  Google Scholar 

  7. Qiao, L., Tang, W., Chu, T.: 16\(\times\)16 Non-blocking silicon electro-optic switch based on Mach-Zehnder interferometers. In: 2016 Optical Fiber Communications Conference and Exhibition, OFC, vol. 24, no. 9, pp. 9295–9307 (2016)

  8. Soref, R.A., Bennett, B.R.: Electrooptical effects in silicon. IEEE J. Quantum Electron. 23(1), 123–129 (1987)

    Article  Google Scholar 

  9. Earnshaw, M.P., et al.: 8\(\times\)8 optical switch matrix using generalized Mach–Zehnder interferometers. IEEE Photonics Technol. Lett. 15(6), 810–812 (2003)

    Article  Google Scholar 

  10. Lee, B.G., et al.: Silicon photonic switch fabrics in computer communications systems. J. Light. Technol. 33(4), 768–777 (2015)

    Article  Google Scholar 

  11. Cheng, Q., Rumley, S., Bahadori, M., Bergman, K.: Photonic switching in high performance datacenters [Invited]. Opt. Express 26(12), 16022–16043 (2018)

    Article  Google Scholar 

  12. Soref, R.: Tutorial: integrated-photonic switching structures. APL Photonics 3(2), 021101 (2018)

    Article  Google Scholar 

  13. Tu, X., Song, C., Huang, T., Chen, Z., Fu, H.: State of the art and perspectives on silicon photonic switches. Micromachines 10(1), 51 (2019)

    Article  Google Scholar 

  14. Hinton, H.S.: Photonic switching using directional coupler. IEEE Commun. Mag. 25(5), 6–26 (1987)

    Article  Google Scholar 

  15. Chinni, V.R., et al.: Crosstalk in a lossy directional coupler switch. J. Light. Technol. 13(7), 1530–1535 (1995)

    Article  Google Scholar 

  16. Pérez, D., Gasulla, I., Capmany, J.: Field-programmable photonic arrays. Opt. Express 26(21), 27265 (2018)

    Article  Google Scholar 

  17. Soref, R.: Mid-infrared 2\(\times\)2 electro-optical switching by silicon and germanium three-waveguide and four-waveguide directional couplers using free-carrier injection. Photonics Res. 2(5), 102 (2014)

    Article  Google Scholar 

  18. Campbell, J.C., Blum, F.A., Shaw, D.W., Lawley, K.L.: GaAs electro-optic directional-coupler switch. Appl. Phys. Lett. 27(4), 202–205 (1975)

    Article  Google Scholar 

  19. Ding, Y., et al.: On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt. Express 21(8), 10376 (2013)

    Article  Google Scholar 

  20. Wang, J., et al.: Design of a SiO\(_2\) top-cladding and compact polarization splitter-rotator based on a rib directional coupler. Opt. Express 22(4), 4137 (2014)

    Article  Google Scholar 

  21. Zhang, X., et al.: Highly linear broadband optical modulator based on electro-optic polymer. IEEE Photonics J. 4(6), 2214–2228 (2012)

    Article  Google Scholar 

  22. Dumais, P.: Optical waveguide termination having a doped, light-absorbing slab, U.S. Patent 10,359,569 July (2019)

  23. Ali, M.M., Meetei, T.S., Pandiyan, K.: Configurable photonic element: analysis and design towards reconfigurable photonic ICs. In: Proceedings of IEEE, TEQIP-III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks, IMICPW, pp. 405–408 (2019)

  24. Huang, W.-P.: Coupled-mode theory for optical waveguides: an overview. J. Opt. Soc. Am. A. 11(3), 963 (1994)

    Article  Google Scholar 

  25. Rylyakov, A.V., et al.: Design and fabrication of low-insertion-loss and low-crosstalk broadband 2 \(\times\) 2 Mach–Zehnder silicon photonic switches. J. Light. Technol. 33(17), 3597–3606 (2015)

    Article  Google Scholar 

  26. Soref, R.A., Bennett, B.R.: Kramers–Kronig Analysis Of Electro-Optical Switching in Silicon. In: Proceedings of SPIE 0704, Integrated Optical Circuit Engineering IV, (10 March 1987)

  27. Nandi, R., Kurudi, S., Das, B.K.: Diffusion doped p-i-n/p-n diodes for scalable silicon photonics devices. In: Proceedings of SPIE 10249, Integrated Photonics: Materials, Devices, and Applications IV, 102490Q (30 May 2017)

  28. Nedeljkovic, M., Soref, R., Mashanovich, G.Z.: Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14 \(mu\)m infrared wavelength range. IEEE Photon. J. 3(6), 1171–1180 (2011)

    Article  Google Scholar 

  29. Shockley, W.: The theory of p-n junctions in semiconductors and p-n junction transistors. Bell Syst. Tech. J. 28(3), 435–489 (1949)

    Article  Google Scholar 

  30. Lu, Z., Celo, D., Mehrvar, H., Bernier, E., Chrostowski, L.: High-performance silicon photonic tri-state switch based on balanced nested Mach–Zehnder interferometer. Sci. Rep. 7(1), 1–7 (2017)

    Article  Google Scholar 

  31. MATLAB software (Mathworks Inc). https://www.mathworks.com/

  32. OptiBPM Designer software (Optiwave Systems Inc). https://www.optiwave.com/

  33. Dong, P., Liu, X., Chandrasekhar, S., Buhl, L.L., Aroca, R., Chen, Y.: Monolithic silicon photonic integrated circuits for compact 100 \(^{+}\)Gb/s coherent optical receivers and transmitters. IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014)

    Article  Google Scholar 

  34. Thomson, D.J., et al.: 50-Gb/s silicon optical modulator. IEEE Photon. Technol. Lett. 24(4), 234–236 (2012)

    Article  Google Scholar 

  35. Streshinsky, M., Ding, R., Novack, A., Liu, Y., Tu, X., Lim, A.E., Chen, E.K.S., Lo, P.G., Baehr-Jones, T., Hochberg, M.: 50 Gb/s Silicon traveling wave Mach–Zehnder modulator near 1300 nm. In: Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.5

  36. Azadeh, S.S., Merget, F., Romero-García, S., Moscoso-Mártir, A., von den Driesch, N., Müller, J., Mantl, S., Buca, D., Witzens, J.: Low \(V_{\pi }\) silicon photonics modulators with highly linear epitaxially grown phase shifters. Opt. Express 23, 23526–23550 (2015)

    Article  Google Scholar 

  37. Naumova, O.V., Fomin, B.I., Zhivodkov, Y.A., et al.: Silicon p-n-diode based electro-optic modulators. Optoelectron. Instrum. Proc. 55, 431–436 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India for the financial support (Ref. No.: CRG/2018/001788). The authors also wish to acknowledge SASTRA Deemed University for the research assistantship and the OptiSystem for the OptiBPM software package.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnamoorthy Pandiyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meerasha, M.A., Meetei, T.S., Madhupriya, G. et al. The design and analysis of a CMOS-compatible silicon photonic ON–OFF switch based on a mode-coupling mechanism. J Comput Electron 19, 1651–1659 (2020). https://doi.org/10.1007/s10825-020-01550-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01550-1

Keywords

Navigation