Skip to main content
Log in

An investigation of a suppressed-drain cylindrical gate-all-around retrograde-doped heterospacer steep-density-film tunneling field-effect transistor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The effect of retrograde doping with a high-density layer on the performance of a cylindrical (cyl.) gate-all-around (GAA) tunneling field-effect transistor (TFET) has been investigated. The proposed device design incorporates retrograde doping (RD) along with a heterospacer (HeTS) on a silicon-germanium substrate. The proposed device also includes a suppressed drain (SD) and steep density film (SDF) to achieve the optimal ON-current (ION) but suppressed OFF-current (IOFF) across the drain tunneling junctions. Since a high gate potential results in band bending in the source and drain regions due to the fringing fields, the heterospacer dielectric causes steep energy-band bending on the source side, leading to a high current drivability. Furthermore, to mitigate reliability issues, the trap charges are analyzed. Enhanced switching and radiofrequency (RF) characteristics are achieved when retrograde doping is incorporated with a steep density film. The device design and simulation are performed using Synopsys three-dimensional (3D) technology computer-aided design (TCAD) software. Direct-current (DC) and transient characteristics such as IOFF, ION, the gate–source capacitance (Cgs), the gate–drain capacitance (Cgd), the transconductance (gm), the electric field intensity, and the average subthreshold swing (SSavg) are analyzed for the three proposed structures. The simulation results reveal that that the SD GAA RD HeTS SDF TFET exhibits enhanced performance compared with other device structures, showing a high ION of 1.64 × 10–5 A/µm, a diminished IOFF of 3.48 × 10–18 A/µm, a gm of 57 µS/µm at Vgs = 0.6 V, and the steepest subthreshold slope (SS) of 29 mV/decade, but without degradation of the current drivability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Beohar, A., Vishvakarma, S.K.: Performance enhancement of asymmetrical underlap 3D-cylindrical GAA-TFET with low spacer width. IET Micro Nano Lett. 11, 2219 (2016)

    Article  Google Scholar 

  2. Vishnoi, R., Jagadesh, M.K.: Two dimensional analytical model for the threshold voltage of a tunneling FET with localized charges. IEEE Trans. Electron Dev. 61, 3054–3059 (2014)

    Article  Google Scholar 

  3. Yadav, S., Madhukar, R., Sharma, D.: A new structure of electrically doped TFET for improving electronic characteristics. Appl. Phys. A 124, 517 (2018)

    Article  Google Scholar 

  4. Chang, H., Adams, B., Chien, P., et al.: Improved subthreshold and output characteristics of source-pocket Si tunnel FET by the application of laser annealing. IEEE Trans. Electron Dev. 67, 704–710 (2013)

    Google Scholar 

  5. Lee, J.S., Seo, J.H., Cho, S., et al.: Simulation study on effect of drain underlap in gate-all-around tunneling field-effect transistors. Curr. Appl. Phys. 13, 1143–1149 (2013)

    Article  Google Scholar 

  6. Beohar, A., Yadav, N., Shah, A.P.: Analog/RF characteristics of a 3D-Cyl underlap GAA-TFET based on a Ge source using fringing-field engineering for low-power applications. J. Comput. Electron 17, 1650–1657 (2018)

    Article  Google Scholar 

  7. Xu, P., Lou, H., Zhang, L., et al.: Compact model for double-gate tunnel FETs with gate-drain underlap. IEEE Trans. Electron Dev. 54, 1725–1733 (2017)

    Google Scholar 

  8. Pon, A., Tulasi, K.S.V.P., Ramesh, R.: Effect of interface trap charges on the performance of asymmetric dielectric modulated dual short gate tunnel FET. AEÜ Int. J. Electr. Commun. 102, 1–8 (2019)

    Article  Google Scholar 

  9. Priya, G.L., Balamurugan, N.B.: New dual material double gate junctionless tunnel FET: subthreshold modeling and simulation. AEÜ Int. J. Electr. Commun. 99, 130–138 (2019)

    Article  Google Scholar 

  10. Rahimian, M., Fathipour, M.: Improvement of electrical performance in junctionless nanowire TFET using hetero-gate-dielectric. Mater. Sci. Semicond. Process. 63, 142–152 (2017)

    Article  Google Scholar 

  11. Madan, J., Pandey, R., Chaujar, R.: Gate drain underlapping: a performance enhancer for HD-GAA-TFET. Mater. Today Proc. 5, 17453–17463 (2018)

    Article  Google Scholar 

  12. Moselund, K.E.: Silicon nanowire tunnel FETs: low-temperature operation and influence of high-k gate dielectric. IEEE Trans. Electron Dev. 58, 2911–2916 (2011)

    Article  Google Scholar 

  13. Beohar, A., Yadav, N., Vishvakarma, S.K.: Analysis of trap assisted tunneling in asymmetrical underlap 3D-cylindrical GAA-TFET based on hetero-spacer engineering for improved device reliability. IET Micro & Nano Lett. 12, 982–986 (2017)

    Article  Google Scholar 

  14. Yang, Z., Yang, Y., et al.: Improving ESD protection robustness using SiGe source/drain regions in tunnel FET. Micromachines 9, 657 (2018)

    Article  Google Scholar 

  15. Zhao, Y., Qu, Y.: Impact of self-heating effect on transistor characterization and reliability issues in Sub-10 nm technology nodes. IEEE J. Electron Dev. Soc. 7, 829–836 (2019)

    Article  Google Scholar 

  16. Bordallo, C., Martino, J.A. et al.: Analysis of analog parameters in NW-TFETs with Si and SiGe source composition at high temperatures. In: 2015 30th Symposium on Microelectronics Technology and Devices (SBMicro) (2015)

  17. Martino, M., Neves, F., et al.: Analog performance of vertical nanowire TFETs as a function of temperature and transport mechanism. Solid-State Electron. 112, 51–55 (2015)

    Article  Google Scholar 

  18. Jhan, Y.R., Wu, Y.C., Hung, M.F.: Performance enhancement of nanowire tunnel field-effect transistor with asymmetry-gate based on different screening length. IEEE Electron Dev. Lett. 34, 1482–1484 (2013)

    Article  Google Scholar 

  19. Seo, J.H., Yoon, Y.J., et al.: Design and analysis of Si-based arch-shaped gate-all-around (GAA) tunneling field-effect transistor (TFET). Curr. Appl. Phys. 15, 208–212 (2015)

    Article  Google Scholar 

  20. Lee, J.S., Choi, Y., Kang, M.: Characteristics of gate-all-around hetero-gate-dielectric tunneling field-effect transistors. Jpn. J. Appl. Phys. 51, 06 (2012)

    Article  Google Scholar 

  21. Gupta, D., Vishvakarma, S.K.: Improvement of short channel performance of junction-free charge trapping 3-D NAND flash memory. Micro Nano Lett. 12, 64–68 (2017)

    Article  Google Scholar 

  22. Reniwal, B., Vijayvargiya, V., Vishvakarma, S.K., Dwivedi, D.: An auto calibrated sense amplifier for energy efficient SRAM with offset prediction approach. Circuits Syst. Signal Process. CSSP 38, 1482–1505 (2019)

    Article  Google Scholar 

  23. Reniwal, B., Bhatia, P., Vishvakarma, S.K.: Design and investigation of variability aware sense amplifier for low power, High Speed SRAM. Microelectr. J. 59, 22–32 (2017)

    Article  Google Scholar 

  24. Beohar, A., et al.: Compact spiking neural network system with SiGe based cylindrical tunneling transistor for low power applications. In: Sengupta, A., Dasgupta, S., Singh, V., Sharma, R., Kumar Vishvakarma, S. (eds.) VLSI Design and Test. VDAT 2019. Communications in Computer and Information Science. Springer, Singapore (2019)

    Google Scholar 

  25. Sentaurus device manual 2017.1. https://www.synopsys.com/silicon/tcad/sentausdevice.html

  26. Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans. Electron Dev. 54, 1725–1733 (2007)

    Article  Google Scholar 

  27. Vandooren, A., Leonelli, D., Rooyackers, R., et al.: Impact of process and geometrical parameters on the electrical characteristics of vertical nanowire silicon n-TFETs. Solid-State Electr. 72, 82–87 (2012)

    Article  Google Scholar 

  28. Chen, Z., Yu, H., et al.: Demonstration of tunneling FETs based on highly scalable vertical silicon nanowires. Electron Dev. Lett. IEEE 30, 754–756 (2009)

    Article  Google Scholar 

  29. Vasen, T., Ramvall, P., et al.: Vertical gate-all-around nanowire GaSb-InAs core-shell n-type tunnel FETs. Sci. Rep. 9, 202 (2019)

    Article  Google Scholar 

  30. Jeon, K.: Si tunnel transistors with a novel silicided source and 46 mV/dec swing. In: 2010 Symposium on VLSI Technology, Honolulu (2010)

  31. Walke, A., Vandooren, A., Rooyackers, M., et al.: Fabrication and analysis of a Si/Si0.55Ge0.45 heterojunction line tunnel FET. IEEE Trans. Electron Dev. 61, 707–715 (2014)

    Article  Google Scholar 

  32. Huang, Q., et al.: A novel Si tunnel FET with 36 mV/dec subthreshold slope based on junction depleted-modulation through striped gate configuration. In: 2012 International Electron Devices Meeting, San Francisco, CA (2012)

  33. Le Royer, C., Mayer, F.: Exhaustive experimental study of tunnel field effect transistors (TFETs): from materials to architecture. In: 2009 10th International Conference on Ultimate Integration of Silicon, Aachen, Germany (2009)

  34. Rosca, T., Saeidi, A., et al.: An experimental study of heterostructure tunnel FET nanowire arrays: digital and analog figures of merit from 300K to 10K. In: 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA (2018)

  35. Choi, W.Y., et al.: Demonstration of hetero-gate-dielectric tunneling field-effect transistors (HG TFETs). Nano Converg. 3, 13 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank VIT Bhopal University and the Nanoscale Devices, VLSI Circuit, and System Design Research Group of IIT Indore, Indore for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Beohar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, S., Dutt, A., Joshi, M. et al. An investigation of a suppressed-drain cylindrical gate-all-around retrograde-doped heterospacer steep-density-film tunneling field-effect transistor. J Comput Electron 20, 1702–1710 (2021). https://doi.org/10.1007/s10825-021-01741-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01741-4

Keywords

Navigation