Skip to main content
Log in

Signal propagation in feedforward neuronal networks with unreliable synapses

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

In this paper, we systematically investigate both the synfire propagation and firing rate propagation in feedforward neuronal network coupled in an all-to-all fashion. In contrast to most earlier work, where only reliable synaptic connections are considered, we mainly examine the effects of unreliable synapses on both types of neural activity propagation in this work. We first study networks composed of purely excitatory neurons. Our results show that both the successful transmission probability and excitatory synaptic strength largely influence the propagation of these two types of neural activities, and better tuning of these synaptic parameters makes the considered network support stable signal propagation. It is also found that noise has significant but different impacts on these two types of propagation. The additive Gaussian white noise has the tendency to reduce the precision of the synfire activity, whereas noise with appropriate intensity can enhance the performance of firing rate propagation. Further simulations indicate that the propagation dynamics of the considered neuronal network is not simply determined by the average amount of received neurotransmitter for each neuron in a time instant, but also largely influenced by the stochastic effect of neurotransmitter release. Second, we compare our results with those obtained in corresponding feedforward neuronal networks connected with reliable synapses but in a random coupling fashion. We confirm that some differences can be observed in these two different feedforward neuronal network models. Finally, we study the signal propagation in feedforward neuronal networks consisting of both excitatory and inhibitory neurons, and demonstrate that inhibition also plays an important role in signal propagation in the considered networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. An anonymous reviewer kindly reminded us that there might be a relevant abstract (Trommershäuser and Diesmann 2001) discussing the effect of synaptic variability on the synchronization dynamics in feedforward cortical neural networks, but the abstract itself does not contain the results presumably presented on the poster and also the follow-up publications do not exist.

References

  • Abeles, M. (1991). Corticonics: Neural circuits of the cerebral cortex. New York: Cambridge Uinversity Press.

    Book  Google Scholar 

  • Aertsen, A., Diesmann, M., & Gewaltig, M. O. (1996). Propagation of synchronous spiking activity in feedforward neural networks. Journal of Physiology-Paris, 90, 243–247.

    Article  CAS  Google Scholar 

  • Allen, C., & Stevens, C. F. (1994). An evaluation of causes for unreliability of synaptic transmission. Proceedings of the National Academy of Sciences of the United States of America, 91, 10380–10383.

    Article  PubMed  CAS  Google Scholar 

  • Aviel, Y., Mehring, C., Abeles, M., & Horn, D. (2003). On embedding synfire chains in a balanced network. Neural Computation, 15, 1321–1340.

    Article  PubMed  CAS  Google Scholar 

  • Boven, K. H., & Aertsen, A. M. H. J. (1990). Dynamics of activity in neuronal networks give rise to fast modulations of functional connectivity. In Parallel processing and neural systems and computers (pp. 53–56). Amsterdam: Elsevier.

    Google Scholar 

  • Branco, T., & Staras, K. (2009). The probability of neurotransmitter release: Variability and feedback control at single synapses. Nature Reviews Neuroscience, 10, 373–383.

    Article  PubMed  CAS  Google Scholar 

  • Câteau, H., & Fukai, T. (2001). Fokker-Planck approach to the pulse packet propagation in synfire chain. Neural Networks, 14, 675–685.

    Article  PubMed  Google Scholar 

  • Chialvo, D. R., Longtin, A., & Muller-Gerking, J. (1997). Stochastic resonance in models of neuronal ensembles. Physical review E, 55, 1798–1808.

    Article  CAS  Google Scholar 

  • Collins, J. J., Chow, C. C., & Imhoff, T. T. (1995a). Stochastic resonance without tuning. Nature, 376, 236–238.

    Article  PubMed  CAS  Google Scholar 

  • Collins, J. J., Chow, C. C., & Imhoff, T. T. (1995b). Aperiodic stochastic resonance in excitable systems. Physical Review E, 52, R3321–R3324.

    Article  Google Scholar 

  • Collins, J. J., Chow, C. C., Capela, A. C., & Imhoff, T. T. (1996). Aperiodic stochastic resonance. Physical Review E, 54, 5575–5584.

    Article  CAS  Google Scholar 

  • Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computaional and mathematical modeling of neural systems. Cambridge: MIT Press.

    Google Scholar 

  • Diesmann, M., Gewaltig, M. O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402, 529–533.

    Article  PubMed  CAS  Google Scholar 

  • Diesmann, M., Gewaltig, M. O., Rotter, S., & Aertsen, A. (2001). State space analysis of synchronous spiking in cortical neural networks. Neurocomputing, 38–40, 565–571.

    Article  Google Scholar 

  • Diesmann, M. (2002). Conditions for stable propagation of synchronous spiking in cortical neural networks: Single neuron dynamics and network properties. Ph.D. thesis, University of Bochum.

  • Friedrich, J., & Kinzel, W. (2009). Dynamics of recurrent neural networks with delayed unreliable synapses: Metastable clustering. Journal of Computational Neuroscience, 27, 65–80.

    Article  PubMed  Google Scholar 

  • Gewaltig, M. O., Diesmann, M., & Aertsen, A. (2001). Propagation of cortical synfire activity: Survival probability in single trials and stability in the mean. Neural Networks, 14, 657–673.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, M. S., Maldonado, P., & Abbott, L. F. (2002). Redundancy reduction and sustained firing with stochastic depressing synapses. Journal of Computational Neuroscience, 22, 584–591.

    CAS  Google Scholar 

  • Goldman, M. S. (2004). Enhancement of information transmission efficiency by synaptic failures. Neural Computation, 16, 1137–1162.

    Article  PubMed  Google Scholar 

  • Guo, D. Q., & Li, C. G. (2009). Stochastic and coherence resonance in feed-forward-loop neuronal network motifs. Physical Review E, 79, 051921.

    Article  Google Scholar 

  • Hamaguchi, K., & Aihara, K. (2005). Quantitative information transfer through layers of spiking neurons connected by Mexican-hat-type connectivity. Neurocomputing, 58–60, 85–90.

    Google Scholar 

  • Hamaguchi, K., Okada, M., Yamana, M., & Aihara, K. (2005). Correlated firing in a feedforward network with mexican-hat-type connectivity. Neural Compuation, 17, 2034–2059.

    Article  Google Scholar 

  • Hehl, U., Hellwig, B., Rotter, S., Diesmann, M., Aertsen, A. (2001). Localization of synchronous spiking as a result of anatomical connectivity. Soc. Neurosci. Abstr., 64, 1.

    Google Scholar 

  • Katz, B. (1966). Nerve, muscle and synapse. New York: McGraw-Hill.

    Google Scholar 

  • Katz, B. (1969). The release of neural transmitter substances. Liverpool: Liverpol University Press.

    Google Scholar 

  • Kloeden, P. E., Platen, E., & Schurz, H. (1994). Numerical solution of sde through computer experiments. Berlin: Springer-Verlag Press.

    Google Scholar 

  • Kumar, A., Rotter, S., & Aertsen, A. (2008). Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. Journal of Neuroscience, 28, 5268–5280.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, A., Rotter, S., & Aertsen, A. (2010). Spiking activity propagation in neuronal networks: Reconciling different perspectives on neural coding. Nature Reviews, Neuroscience, 11, 615–627.

    Article  CAS  Google Scholar 

  • Li, C., Chen, L., & Aihara, K. (2006). Transient resetting: A novel mechanism for synchrony and its biological examples. PLoS Computational Biology, 2, e103.

    Article  Google Scholar 

  • Lindner, B., & Schimansky-Geier, L. (2002). Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model. Physical Review E, 66, 031916.

    Article  Google Scholar 

  • Maass, W., & Natschläger, T. (2000). A model for fast analog computation based on unreliable synapses. Neural Computation, 12, 1679–1704.

    Article  PubMed  CAS  Google Scholar 

  • Masuda, N., & Aihara, K. (2002). Bridging rate coding and temporal spike coding by effect of noise. Physical Review Letters, 88, 248101.

    Article  PubMed  Google Scholar 

  • Masuda, N., & Aihara, K. (2003). Duality of rate coding and temporal coding in multilayered feedforward networks. Neural Computation, 15, 103–125.

    Article  PubMed  Google Scholar 

  • Nordlie, E., Gewaltig, M. O., & Plesser, H. E. (2009). Towards reproducible descriptions of neuronal network models. PLoS Computational Biology, 5, e1000456.

    Article  Google Scholar 

  • Pikovsky, A. S., & Kurths, J. (1996). Coherence resonance in a noise-driven excitable system. Physical Review Letters, 78, 775–778.

    Article  Google Scholar 

  • Postma, E. O., van den Herik, H. J., & Hudson, P. T. W. (1996). Robust feedforward processing in synfire chains. International Journal of Neural Systems, 7, 537–542.

    Article  PubMed  CAS  Google Scholar 

  • Raastad, M., Storm, J. F., & Andersen, P. (1992). Putative single quantum and single fibre excitatory postsynaptic currents show similar amplitude range and variability in rat hippocampal slices. European Journal of Neuroscience, 4, 113–117.

    Article  PubMed  Google Scholar 

  • Rosenmund, C., Clements, J. D., & Westbrook, G. L. (1993). Nonuniform probability of glutamate release at a hippocampal synapse. Science, 262, 754–757.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki, T., Câteau, H., Urakubo, H., & Okada, M. (2007). Controlling synfire chain by inhibitory synaptic input. Journal of the Physical Society of Japan, 76, 044806.

    Article  Google Scholar 

  • Shinozaki, T., Okada, M., Reyes, A. D., & Câteau, H. (2010). Flexible traffic control of the synfire-mode transmission by inhibitory modulation: Nonlinear noise reduction. Physical Review E, 81, 011913.

    Article  Google Scholar 

  • Smetters, D. K., & Zador, A. (1996). Synaptic transmission: Noisy synapses and noisy neurons. Current Biology, 6, 1217–1218.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, C. F., & Wang, Y. (1995). Facilitation and depression at single central synapses. Neuron, 14, 795–802.

    Article  PubMed  CAS  Google Scholar 

  • Tetzlaff, T., Buschermoehle, M., Geisel, T., & Diesmann, M. (2003). The spread of rate and correlation in stationary cortical networks. Neurocomputing, 52–54, 949–954.

    Article  Google Scholar 

  • Tetzlaff, T., Geisel, T., & Diesmann, M. (2002). The ground state of cortical feed-forward networks. Neurocomputing, 44–46, 673–678.

    Article  Google Scholar 

  • Trommershäuser, J., & Diesmann, M. (2001). The effect of synaptic variability on the synchronization dynamics in feed-forward cortical networks. Soc. Neurosci. Abstr., 64, 4.

    Google Scholar 

  • Trommershäuser, J., Marienhagen, J., & Zippelius, A. (1999). Stochastic model of central synapses: Slow diffusion of transmitter interacting with spatially distributed receptors and transporters. Journal of Theoretical Biology, 198, 101–120.

    Article  PubMed  Google Scholar 

  • van Rossum, M. C. W., Turrigiano, G. G., & Nelson, S. B. (2002). Fast propagation of firing rates through layered networks of noisy neurons. Journal of Neuroscience, 22, 1956–1966.

    PubMed  Google Scholar 

  • Vogels, P. T., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25, 10786–10795.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S. T., Wang, W., & Liu, F. (2006). Propagation of firing rate in a feed-forward neuronal network. Physical Review Letters, 96, 018103.

    Article  PubMed  Google Scholar 

  • Wang, S. T., & Zhou, C. S. (2009). Information encoding in an oscillatory network. Physical Review E, 79, 061910.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Feng Chen, Yuke Li, Qiuyuan Miao, Xin Wei and Qunxian Zheng for valuable comments on an early version of this manuscript. We gratefully acknowledge the anonymous reviewers for providing useful comments and suggestions, which greatly improved our paper. We also sincerely thank one reviewer for reminding us of a critical citation (Trommershäuser and Diesmann 2001). This work is supposed by the National Natural Science Foundation of China (Grant No. 60871094), the Foundation for the Author of National Excellent Doctoral Dissertation of PR China, and the Fundamental Research Funds for the Central Universities (Grant No. 1A5000-172210126). Daqing Guo would also like to thank the award of the ongoing best PhD thesis support from the University of Electronic Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunguang Li.

Additional information

Action Editor: Nicolas Brunel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, D., Li, C. Signal propagation in feedforward neuronal networks with unreliable synapses. J Comput Neurosci 30, 567–587 (2011). https://doi.org/10.1007/s10827-010-0279-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0279-7

Keywords

Navigation