Skip to main content

Advertisement

Log in

Neural field model of binocular rivalry waves

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We present a neural field model of binocular rivalry waves in visual cortex. For each eye we consider a one-dimensional network of neurons that respond maximally to a particular feature of the corresponding image such as the orientation of a grating stimulus. Recurrent connections within each one-dimensional network are assumed to be excitatory, whereas connections between the two networks are inhibitory (cross-inhibition). Slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We derive an analytical expression for the speed of a binocular rivalry wave as a function of various neurophysiological parameters, and show how properties of the wave are consistent with the wave-like propagation of perceptual dominance observed in recent psychophysical experiments. In addition to providing an analytical framework for studying binocular rivalry waves, we show how neural field methods provide insights into the mechanisms underlying the generation of the waves. In particular, we highlight the important role of slow adaptation in providing a “symmetry breaking mechanism” that allows waves to propagate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. From a mathematical perspective, it would also be possible to generate waves when the cross-inhibition is longer range than the excitatory connections, see Fig. 4. Which form is more realistic from the biological perspective depends on which classes of neurons are being taken into account by the neural field model. For example, in visual cortex it is known that excitatory pyramidal cells make both local synaptic contacts as well as longer-range horizontal connections. However, the latter innervate both excitatory and local inhibitory neurons so they could have a net inhibitory effect, thus providing a possible source of long-range inhibition; whether long-range connections generate net excitation or net inhibition also depends on stimulus conditions (Lund et al. 2003).

References

  • Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic depression and cortical gain control. Science, 275, 220–224.

    Article  PubMed  CAS  Google Scholar 

  • Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27, 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Angelucci, A., Levitt, J. B., Walton, E. J. S., Hupe, J.-M., Bullier, J., & Lund, J. S. (2002). Circuits for local and global signal integration in primary visual cortex. Journal of Neuroscience, 22, 8633–8646.

    PubMed  CAS  Google Scholar 

  • Bart, E., Bao, S., & Holcman, D. (2005). Modeling the spontaneous activity of the auditory cortex.. Journal of Computational Neuroscience, 19, 357–378.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yishai, R., Bar-Or, R. L., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 92, 3844–3848.

    Article  PubMed  CAS  Google Scholar 

  • Blake, R. (2001). A primer on binocular rivalry, including current controversies. Brain and Mind, 2, 5–38.

    Article  Google Scholar 

  • Blake, R., & Logothetis, N. (2002). Visual competition. Nature Reviews Neuroscience, 3, 1–11.

    Article  Google Scholar 

  • Blasdel, G. G. (1992). Orientation selectivity, preference, and continuity in monkey striate cortex. Journal of Neuroscience, 12, 3139–3161.

    PubMed  CAS  Google Scholar 

  • Braun, J. C., & Mattia, M. (2010). Attractors and noise: Twin drivers of decisions and multistability. Neuroimage, 52, 740–751.

    Article  PubMed  Google Scholar 

  • Bressloff, P. C., & Cowan, J. D. (2002). An amplitude equation approach to contextual effects in visual cortex. Neural Computation, 14, 493–525.

    Article  PubMed  Google Scholar 

  • Bressloff, P. C., Cowan, J. D., Golubitsky, M., Thomas, P. J., & Wiener, M. (2001). Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 40, 299–330.

    Article  Google Scholar 

  • Chance, F. S., Nelson, S. B., & Abbott, L. F. (1998). Synaptic depression and the temporal response characteristics of V1 cells. Journal of Neuroscience, 18, 4785–4799.

    PubMed  CAS  Google Scholar 

  • Coombes, S., & Owen, M. R. (2004). Evans functions for integral neural field equations with Heaviside firing rate function. SIAM Journal on Applied Dynamical Systems, 3, 574–600.

    Article  Google Scholar 

  • De Weerd, P., Desimone, R., & Ungerleider, L. G. (1998). Perceptual filling in: A parametric study. Vision Research, 38, 2721–2734.

    Article  PubMed  Google Scholar 

  • Ferster, D., & Miller, K. D. (2000). Neural mechanisms of orientation selectivity in the visual cortex. Annual Review of Neuroscience, 23, 441–471.

    Article  PubMed  CAS  Google Scholar 

  • Fox, R., & Rasche, F. (1969). Binocular rivalry and reciprocal inhibition. Perception & Psychophysics, 5, 215–217.

    Article  Google Scholar 

  • Gigante, G., Mattia, M., Braun, J., & Del Giudice, P. (2009). Bistable perception modeled as competing stochastic integrations at two levels. PLoS Computational Biological 5(7), e1000430.

    Article  Google Scholar 

  • Gold, J. M., & Shubel, E. (2006). The spatiotemporal properties of visual completion measured by response classification. Journal of Vision, 6, 356–365.

    PubMed  Google Scholar 

  • Hadjikhani, N., Sanchez Del Rio, M., Wu, O., Schwartz, D., Bakker, D., et al. (2001). Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 98, 4687–4692.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.

    Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1977). Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London. Series B, Biological Sciences, 198, 1–59.

    Article  PubMed  CAS  Google Scholar 

  • Jancke, D., Chavane, F., Maaman, S., & Grinvald, A. (2004). Imaging cortical correlates of illusion in early visual cortex. Nature, 428, 423–426.

    Article  PubMed  CAS  Google Scholar 

  • Kang, M., Heeger, D. J., & Blake, R. (2009). Periodic perturbations producing phase-locked fluctuations in visual perception. Journal of Vision, 9(2:8), 1–12.

    Google Scholar 

  • Kang, M., Lee, S.-H., Kim, J., Heeger, D. J., & Blake, R. (2010). Modulation of spatiotemporal dynamics of binocular rivalry by collinear facilitation and pattern-dependent adaptation. Journal of Vision, 10(11:3), 1–15.

    Google Scholar 

  • Katz, L. C., Gilbert, C. D., & Wiesel, T. N. (1989). Local circuits and ocular dominance columns in monkey striate cortex. Journal of Neuroscience, 9, 1389–1399.

    PubMed  CAS  Google Scholar 

  • Kilpatrick, Z. P., & Bressloff, P. C. (2010). Binocular rivalry in a competitive neural network with synaptic depression. SIAM Journal of Applied Dynamical Systems, 9, 1303–1347.

    Article  Google Scholar 

  • Laing, C. R., & Chow, C. C. (2002). A spiking neuron model for binocular rivalry. Journal of Computational Neuroscience, 12, 39–53.

    Article  PubMed  Google Scholar 

  • Lee, S.-H., Blake, R., & and Heeger, D. J. (2005). Traveling waves of activity in primary visual cortex during binocular rivalry. Nature Neuroscience, 8, 22–23.

    Article  PubMed  CAS  Google Scholar 

  • Loxley, P. N., & Robinson, P. A. (2009). Soliton model of competitive neural dynamics during binocular rivalry. Physical Review Letters, 102, 258701.

    Article  PubMed  CAS  Google Scholar 

  • Lund, J. S., Angelucci, A., & Bressloff, P. C. (2003). Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cerebral Cortex, 12, 15–24.

    Article  Google Scholar 

  • Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noise-induced alternations in an attractor network model of perceptual bistability. Journal of Neurophysiology, 98, 1125–1139.

    Article  PubMed  Google Scholar 

  • Pinto, D. J., & Ermentrout, G. B. (2001). Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses. SIAM Jjournal of Applied Mathematics, 62, 206–228.

    Article  Google Scholar 

  • Sandstede, B. (2007). Evans functions and nonlinear stability of traveling waves in neuronal network models. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 17, 2693–2704.

    Article  Google Scholar 

  • Shpiro, A., Curtu, R., Rinzel, J., & Rubin, N. (2007). Dynamical characteristics common to neuronal competition models. Journal of Neurophysiology, 97, 462–473.

    Article  PubMed  Google Scholar 

  • Shpiro, A., Moreno-Bote, R., Rubin, N. R., & Rinzel, J. (2009). Balance between noise and adaptation in competition models of perceptual bistability. Journal of Computational Neuroscience, 27, 37–54.

    Article  PubMed  Google Scholar 

  • Skinner, F. K., Kopell, N., & Marder, E. (1994). Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. Journal of Computational Neuroscience, 1, 69–87.

    Article  PubMed  CAS  Google Scholar 

  • Sincich, L., & Blasdel, G. G. (2001). Oriented axon projections in primary visual cortex of the monkey. Journal of Neuroscience, 21, 4416–4426.

    PubMed  CAS  Google Scholar 

  • Sterzer, P., Kleinschmidt, A., & Rees, G. (2009). The neural bases of multistable perception. Trends in Cognitive Sciences, 13, 310–318.

    Article  PubMed  Google Scholar 

  • Tabak, J., Senn, W., O’Donovan, M. J., & Rinzel, J. (2000). Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network. Journal of Neuroscience, 20, 3041–3056.

    PubMed  CAS  Google Scholar 

  • Taylor, A. L., Cottrell, G. W., & Kristan, W. B. (2002). Analysis of oscillations in a reciprocally inhibitory network with synaptic depression. Neural Computation, 14, 561–581.

    Article  PubMed  Google Scholar 

  • Tootell, R. B., Switkes, E., Silverman, M. S., & Hamilton, S. L. (1988). Functional anatomy of macaque striate cortex. II. Retinotopic organization. Journal of Neuroscience, 8, 1531–1568.

    PubMed  CAS  Google Scholar 

  • Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10, 821–835.

    Article  PubMed  CAS  Google Scholar 

  • Varela, J. A., Sen, K., Gibson, J., Fost, J., Abbott, L. F., & Nelson, S. B. (1997). A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. Journal of Neuroscience, 17, 7926–7940.

    PubMed  CAS  Google Scholar 

  • Wilson, H. R., Blake, R., & Lee, S. H. (2001). Dynamics of traveling waves in visual perception. Nature, 412, 907–910.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L. (2003). On stability of traveling wave solutions in synaptically coupled neuronal networks. Differential and Integral Equations, 16, 513–536.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Bressloff.

Additional information

Action Editor: Carson C. Chow

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bressloff, P.C., Webber, M.A. Neural field model of binocular rivalry waves. J Comput Neurosci 32, 233–252 (2012). https://doi.org/10.1007/s10827-011-0351-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0351-y

Keywords

Navigation