Skip to main content
Log in

Influence of the Lead Source Materials on the Microstructure and Ferroelectric Properties of PZT Films Sputter-Deposited Using Lead and Lead Oxide

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this investigation, PZT films were sputter-deposited on Si/SiO2/Ti/Pt substrates using a dual-target system. The dual targets Pb/PZT(PbZr0.54Ti0.46O3) and PbO/PZT(PbZr0.54Ti0.46O3) were used to reveal the effects of various lead compensation source materials on the microstructure and ferroelectric properties of the films. The structures of the films were characterized by X-ray diffractometry (XRD) and field emission scanning electron microscopy (FESEM). The chemical binding state was determined using X-ray photoelectron spectrometry (XPS). Ferroelectric polarizability was measured using a Radiant Technology RT66A tester. The influence of deposition temperatures on the microstructure and ferroelectric properties of the films was studied. Perovskite PZT films were successfully deposited using the Pb/PZT and the PbO/PZT dual target sputtering systems at a substrate temperature of between 500 and 580∘C. Structural change was elucidated as a function of deposition temperatures and the lead sources were correlated with the ferroelectric properties of the film. The ferroelectric characteristics of the PZT films deposited using the PbO/PZT dual target were better than those of films deposited using the Pb/PZT dual target, because the former films had a higher bonding energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sayer and K. Sreenivas, Science, 247, 1056 (1990).

    Google Scholar 

  2. T. Shiosak, Ultrason. Symp. Proc., IEEE, 537(1990).

  3. N. Wakiya, K. Kuroyanagi, Y. Xuan, K. Shinozaki, and N. Mizutani, Thin Solid Films, 372, 156 (2000).

    Google Scholar 

  4. J.N. Kim, K.S. Shin, D.H. Kim, B.O. Park, N.K. Kim, and S.H. Cho, Applied Surface Science, 206(1–4), 119 (2003).

    Google Scholar 

  5. M. Cerqueira, R.S. Nasar, E.R. Leite, E. Longo, and J.A. Varela, Ceram. Int., 26(3), 231 (2000).

    Google Scholar 

  6. M.G. Kang, K.T. Kim, and C.I. Kim, Thin Solid Films, 398–399, 448 (2001).

    Google Scholar 

  7. O. Sugiyami, Y. Kondo, H. Suzuki, and S. Kaneko, J. Sol-Gel Soc. Technol., 26, 749 (2003).

    Google Scholar 

  8. C.R. Cho, Cryst. Res. Technol., 35(1), 77 (2000).

    Google Scholar 

  9. N. Ozer and T. Sands, J. Sol-Gel Sci. Technol., 19(1–3), 157 (2000).

    Google Scholar 

  10. C.R. Cho, L.F. Francis, and D.L. Polla, Mater. Lett., 38(2), 125 (1999).

    Google Scholar 

  11. S.A. Impey, Z. Huang, and A. Patel, J. Appl. Phys., 83(4), 2202 (1998).

    Google Scholar 

  12. R. Bruchhaus, Ferroelectrics, 133(1–4), 73 (1992).

    Google Scholar 

  13. N.J. Wu, A. Ignatiev, A.W. Mesarwi, H. Lin, K. Xan, and H.D. Shih, Mater. Chem. Phys., 32, 5019 (1993).

    Google Scholar 

  14. A.R. Zomorrodian, A. Messarwi, N.J. Wu, and A. Ignatiev, Appl. Surf. Sci., 90, 343 (1995).

    Google Scholar 

  15. P. Verardi, F. Craciun, L. Mirenghi, M. Dinescu, and V. Sandu, Appl. Surf. Sci., 138–139, 552 (1999).

    Google Scholar 

  16. A.R. Zomorrodian, A.M.A., and N.J. Wu, Ceram. Int., 25(2), 137 (1999).

    Google Scholar 

  17. H. Kidoh, T. Ogawa, H. Yashima, A. Morimoto, and T. Shimizu, Jpn. J. Appl. Phys. Pt.1, 31, 2965 (1992).

    Google Scholar 

  18. S. Takatani, H. Keiko, K.A. Keiko, and K. Torii, J. Appl. Phys., 85(11), 7784 (1999).

    Google Scholar 

  19. C.W. Chung, Y.H. Byun, and H.I. Kim, Microelectron. Eng., 63(4), 353 (2002).

    Google Scholar 

  20. W.Y. Choi and H.G. Kim, Jpn. J. Appl. Phys., 138(1A), 122 (1999).

    Google Scholar 

  21. W.Y. Choi, J.H. Ahn, and W.J. Lee, Mater. Lett., 37(3), 119 (1998).

    Google Scholar 

  22. K. Iijima, I. Ueda, and K. Kugimiya, Jpn. J. Appl. Phys. Pt.1, 30(9B), 2149 (1991).

    Google Scholar 

  23. T. Hase and T. Shiosaki, Jpn. J. Appl. Phys. Pt.1, 30(9B), 2159 (1991).

    Google Scholar 

  24. S. Yamauchi and M. Yoshimaru, Jpn. J. Appl. Phys., 35, 1553 (1996).

    Google Scholar 

  25. L.N. Chapin and S.A. Myers, Mater. Res. Soc. Symp. Proc., 243, 153 (1992).

    Google Scholar 

  26. M.D. Keijser and D.J.M. Dormans, MRS Bull, 21, 37 (1996).

    Google Scholar 

  27. C.K. Kwok and S.B. Desu, Ceram. Trans., 25, 85 (1992).

    Google Scholar 

  28. T.S. Kim, D.J. Kim, J.K. Lee, and H.J. Jung, J. Vac. Sci. Technol., A15(6), 2831 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. L. Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, W.L., He, J.L. Influence of the Lead Source Materials on the Microstructure and Ferroelectric Properties of PZT Films Sputter-Deposited Using Lead and Lead Oxide. J Electroceram 13, 35–39 (2004). https://doi.org/10.1007/s10832-004-5072-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-004-5072-5

Navigation