Skip to main content
Log in

Phase transition and electrical studies of wolframium doped SrBi2Ta2O9 ferroelectric ceramics

  • Section 1: Electroceramics
  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this study, crystalline structure, dielectric and impedance properties of SrBi2Ta2O9 (SBT) - based ferroelectric ceramics have been investigated with the substitution of wolframium/tungsten (W) onto the tantalum site. Wolframium doped SrBi2(W x Ta1 − x )2O9 (0.0 ≤ x ≤ 0.20) ceramics were synthesized by solid state reaction method. The X-ray diffractogram analysis revealed that the substitution formed a single phase layered perovskite structure for the doping content up to x ≤ 0.05. The dielectric measurements as a function of temperature show an increase in Curie temperature (T c ) over the composition range of x = 0.05 to 0.20. The W6 + substitution in perovskite-like units results in a sharp dielectric anomaly at the ferroelectric phase transition. Furthermore, the dielectric constant at their respective Curie temperature increases with wolframium doping. Both enhanced Curie temperatures and dielectric constants at the Curie points indicate an increase in polarizability, which could be attributed to the increased “rattling space” due to the incorporation of the smaller tungsten cations. The dielectric loss reduces significantly with tungsten addition. AC impedance properties vis-à-vis wolframium content has also been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Aurivillius, Ark. Kemi, 1, 463 (1949).

    CAS  Google Scholar 

  2. B. Aurivillius, Ark. Kemi, 1, 499 (1949).

    CAS  Google Scholar 

  3. B. Aurivillius, Ark. Kemi, 2, 519 (1950).

    CAS  Google Scholar 

  4. B. Aurivillius, Ark. Kemi, 5, 39 (1952).

    CAS  Google Scholar 

  5. J.F. Scott and C.A. Paz de Araujo, Science, 246, 1400 (1989).

    Article  CAS  Google Scholar 

  6. T. Mihara, H. Yoshimori, H. Watanabe, and C.A.P. Araujo, Jpn. J. Appl. Phys., 34, 5233 (1995).

    Article  CAS  Google Scholar 

  7. C.A.P. De Araujo, J.D. Cuchlaro, L.D. McMillan, M.C. Scott, and J.F. Scott, Nature, 374, 627 (1995).

    Article  Google Scholar 

  8. F. Kulcsar, J. Amer. Ceram. Soc., 42, 343 (1959).

    Article  CAS  Google Scholar 

  9. R.B. Atkin, R.L. Holman, and R.M. Fulrath, J. Amer. Ceram. Soc., 54, 113 (1971).

    Article  CAS  Google Scholar 

  10. P. Duran-Martin, A. Castro, P. Millan, and B. Jimenez, J. Mater. Res., 13, 2565 (1998).

    CAS  Google Scholar 

  11. P. Millan, A. Ramirez, and A. Castro, J. Mater. Sci. Lett., 14, 1657 (1995).

    Article  CAS  Google Scholar 

  12. T. Atsuki, N. Soyama, T. Yonezawa, and K. Ogi, Jpn. J. Appl. Phys., 34, 5096 (1972).

    Article  Google Scholar 

  13. M.J. Forbess, S. Seraji, Y. Wu, C.P. Nguyen, and G.Z. Cao, Appl. Phys. Lett., 76, 2934 (2000).

    Article  CAS  Google Scholar 

  14. E.C. Subbarao, J. Phys. Chem. Solids, 23, 665 (1962).

    Article  CAS  Google Scholar 

  15. Y.H. Xu, Ferroelectric Materials and their Applications (Elsevier Science Publishers, Amsterdam, 1991) p. 131.

    Google Scholar 

  16. R.B. Atkin and R.M. Fulrath, J. Amer. Ceram. Soc., 54, 265 (1971).

    Article  CAS  Google Scholar 

  17. Y. Wu and G.Z. Cao, Appl. Phys. Lett., 75, 2650 (1999).

    Article  CAS  Google Scholar 

  18. Y. Wu, G.Z. Cao, J. Mater. Res., 15, 1583 (2000).

    CAS  Google Scholar 

  19. Y. Noguchi, M. Miyayama, and T. Kudo, Phys. Rev., B63, 214102 (2001).

    Google Scholar 

  20. E. Wu, POWD, An interactive powder diffraction data interpretation and indexing program Ver2.1, School of Physical Science, Flinders University of South Australia, Bedford Park S.A. JO42AU.

  21. R.D. Shannon, Acta. Crystallogr., B25, 925 (1965).

    Google Scholar 

  22. Y. Wu, C. Nguyen, S. Seraji, M.J. Forbess, S.J. Limmer, T. Chou, and G. Cao, J. Ame. Ceram. Soc., 84, 2882 (2001).

    Article  CAS  Google Scholar 

  23. Y. Noguchi and M. Miyayama, Appl. Phys. Lett., 78, 1903 (2001).

    Article  CAS  Google Scholar 

  24. Y. Wu, S.J. Limmer, T.P. Chou, and C. Nguyen, J. Mater. Sci. Lett., 21, 947 (2002).

    Article  CAS  Google Scholar 

  25. K. Singh, D.K. Bopardikar, and D.V. Atkare, Ferroelectrics, 82, 55 (1988).

    CAS  Google Scholar 

  26. S. Takahashi and M. Takahashi, Jpn. J. Appl. Phys., 11, 31 (1972).

    Article  CAS  Google Scholar 

  27. J.R. MacDonald, Impedance Spectroscopy (Wiley, New York, 1987).

    Google Scholar 

  28. T.C. Chen, C.L. Thio, and S.B. Desu, J. Mater. Res., 12, 2628 (1997).

    CAS  Google Scholar 

  29. D.M. Smyth, Ferroelectrics, 116, 117 (1991).

    CAS  Google Scholar 

  30. N.A. Schmidt, Ferroelectrics, 31, 105 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Jha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coondoo, I., Jha, A.K., Agarwal, S.K. et al. Phase transition and electrical studies of wolframium doped SrBi2Ta2O9 ferroelectric ceramics. J Electroceram 16, 393–398 (2006). https://doi.org/10.1007/s10832-006-9886-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-006-9886-0

Keywords

Navigation