Skip to main content
Log in

Electrical and optical characterization of Ag2V4O11 and Ag4V2O6F2

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The two silver vanadium oxide phases—Ag2V4O11 and Ag4V2O6F2—were prepared by hydrothermal synthesis. The electrical conductivity of both silver vanadate powders was determined by the powder-solution-composite (PSC) method. The conductivities obtained were 0.0085 ± 0.0005 and 0.0005 ± 0.00015 S/cm for the Ag2V4O11 and Ag4V2O6F2, respectively, the first such report for the Ag4V2O6F2 phase. The optical gap and the transmission where studied by diffuse reflectance. Both were larger for Ag4V2O6F2 than Ag2V4O11, concomitant with a decrease in carrier content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.-M. Tarascon, M. Armand, Nature 414, 359 (2001)

    Article  CAS  Google Scholar 

  2. C.L. Schmidt, P.M. Skarstad, J. Power Sources 97–98, 742 (2001)

    Article  Google Scholar 

  3. J. Drews, G. Fehrmann, R. Staub, R. Wolf, J. Power Sources 97–98, 747 (2001)

    Article  Google Scholar 

  4. C. Schmidt, G. Tam, E. Scott, J. Norton, K. Chen, J. Power Sources 119–121, 979 (2003)

    Article  Google Scholar 

  5. K.J. Takeuchi, A.C. Marschilok, S.M. Davis, R.A. Leising, E.S. Takeuchi, Coord. Chem. Rev. 219–221, 283 (2001)

    Article  Google Scholar 

  6. E.M. Sorensen, H.K. Izumi, J.T. Vaughey, C.L. Stern, K.R. Poeppelmeier, J. Am. Chem. Soc. 127, 6347 (2005)

    Article  CAS  Google Scholar 

  7. S.-Y. Chung, J.T. Bloking, Y.-M. Chiang, Nature 1, 123 (2002)

    Article  CAS  Google Scholar 

  8. B.J. Ingram, T. Mason, J. Electrochem. Soc. 150, E396 (2003)

    Article  CAS  Google Scholar 

  9. E.B. Segal, Chem. Heal. Saf. 7, 18 (2000)

    Article  CAS  Google Scholar 

  10. D. Peters, R.J. Miethchen, Fluor. Chem. 79, 161 (1996)

    Article  CAS  Google Scholar 

  11. J.C. Bertolini, J. Emerg. Med. 10, 163 (1992)

    Article  CAS  Google Scholar 

  12. W.T.A. Harrison, T.M. Nenoff, T.E. Gier, G.D. Stucky, Inorg. Chem. 32, 2437 (1993)

    Article  CAS  Google Scholar 

  13. B.A. Boukamp, Equivalent Circuit for Windows (University of Twente, The Netherlands, 2005)

    Google Scholar 

  14. L.Y. Woo, S. Wansom, T.O. Mason, J. Mater. Sci. 38, 2265 (2003)

    Article  CAS  Google Scholar 

  15. M. Campo, L.Y. Woo, T.O. Mason, E.J. Garboczi, J. Electroceramics 9, 49 (2002)

    Article  CAS  Google Scholar 

  16. R. Landauer, in Electrical Transport and Optical Properties of inhomogeneous media, ed. by J.C. Garland, D.B. Tanner, AIP Conf. Proc., vol 40 (American Institute of Physics, New York, 1978), p.2

  17. R.E. Meredith, C.W. Tobias, in Advances in Electrochemistry and Electrochemical Engineering, vol. 2, ed. by C.W. Tobias (Interscience, New York, 1962), p. 15

    Google Scholar 

  18. J.F. Douglas, E.J. Garboczi, in Advances in Chemical Physics, vol. XCI, ed. by I. Prigogine, S. Rice (Wiley, New York, 1995), p. 85

  19. E.J. Garboczi, J.F. Douglas, Phys. Rev. E 53, 6169 (1996)

    Article  CAS  Google Scholar 

  20. D.S. McLachlan, J.-H. Hwang, T.O. Mason, J. Electroceramics 5, 37 (2000)

    Article  CAS  Google Scholar 

  21. H. Fricke, J. Phys. Chem. 57, 934 (1953)

    Article  CAS  Google Scholar 

  22. H. Fricke, Phys. Rev. 24, 575–587 (1924)

    Article  CAS  Google Scholar 

  23. D. McLachlan, M. Blaszkiewicz, R. Newnhan, J. Am. Ceram. Soc. 73, 2187 (1990)

    Article  CAS  Google Scholar 

  24. J. Newman, J. Electrochem. Soc. 113, 501 (1966)

    Article  CAS  Google Scholar 

  25. B.J. Last, D.J. Thouless, Phys. Rev. Lett. 27, 1719 (1971)

    Article  CAS  Google Scholar 

  26. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973)

    Article  Google Scholar 

  27. D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, London and Philadelphia, 1985)

    Google Scholar 

  28. M. Onoda, K. Kanbe, J. Phys., Condens. Matter 13, 6675 (2001)

    Article  CAS  Google Scholar 

  29. J. Molenda, A. Stoklosa, T. Bak, Solid State Ionics 36, 53 (1989)

    Article  CAS  Google Scholar 

  30. Y. Shimakawas, T. Numata, J. Tabuchi, J. Solid State Chem. 131, 138 (1997)

    Article  Google Scholar 

  31. H. Kawaia, M. Nagatab, H. Kageyamac, H. Tukamoto, Electrochim. Acta 45, 315 (1999)

    Article  Google Scholar 

  32. J. Molenda, Solid State Ionics 176, 1687 (2005)

    Article  CAS  Google Scholar 

  33. C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.-B. Leriche, M. Morcrette, J.-M. Tarascon, C. Masquelier, J. Electrochem. Soc. 152(5), A913–A921 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the NSF-MRSEC program (grant no. DMR-0076097) at the Materials Research Center of Northwestern university.

We thank Dr. N. Erdman from Jeol Corp. and A. P. Merkle from Northwestern University for their help with the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. O. Mason.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertoni, M.I., Kidner, N.J., Mason, T.O. et al. Electrical and optical characterization of Ag2V4O11 and Ag4V2O6F2 . J Electroceram 18, 189–195 (2007). https://doi.org/10.1007/s10832-007-9025-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9025-6

Keywords

Navigation