Skip to main content
Log in

Lead-free piezoelectric ceramics: Alternatives for PZT?

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

An Erratum to this article was published on 29 March 2007

Abstract

Investigations in the development of lead-free piezoelectric ceramics have recently claimed comparable properties to the lead-based ferroelectric perovskites, represented by Pb(Zr,Ti)O3, or PZT. In this work, the scientific and technical impact of these materials is contrasted with the various families of “soft” and “hard” PZTs. On the scientific front, the intrinsic nature of the dielectric and piezoelectric properties are presented in relation to their respective Curie temperatures (T C) and the existence of a morphotropic phase boundary (MPB). Analogous to PZT, enhanced properties are noted for MPB compositions in the (Na,Bi)TiO3-BaTiO3 and ternary system with (K,Bi)TiO3, but offer properties significantly lower. The consequences of a ferroelectric to antiferroelectric transition well below T C further limits their usefulness. Though comparable with respect to T C, the high levels of piezoelectricity reported in the (K,Na)NbO3 family are the result of enhanced polarizability associated with the orthorhombic-tetragonal polymorphic phase transition being compositionally shifted downward. As expected, the properties are strongly temperature dependent, while degradation occurs through the thermal cycling between the two distinct ferroelectric domain states. Extrinsic contributions arising from domains and domain wall mobility were determined using high field strain and polarization measurements. The concept of “soft” and “hard” lead-free piezoelectrics were discussed in relation to donor and acceptor modified PZTs, respectively. Technologically, the lead-free materials are discussed in relation to general applications, including sensors, actuators and ultrasound transducers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. For example: the legislation will be enforced in the EU as the draft directives on waste from electrical and electronic equipment (WEEE), restriction of hazardous substances (RoHS) and end-of life vehicles (ELV).

References

  1. B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, NY, 1971), p. 92

    Google Scholar 

  2. D. Berlincourt, in Ultrasonic Transducer Materials: Piezoelectric Crystals and Ceramics, ed. By O.E. Mattiat (Plenum, London, 1971), Ch.2

    Google Scholar 

  3. A.J. Moulson, J.M. Herbert, Electroceramics—Materials, Properties, Applications (Chapman & Hall, London, 1990)

    Google Scholar 

  4. J.M. Herbert, Ferroelectric Transducers and Sensors (Gordon and Breach Science, New York, 1982)

    Google Scholar 

  5. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  6. E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Appl. Phys. Lett. 87, 182905 (2005)

    Article  CAS  Google Scholar 

  7. Y. Saito, H. Takao, Ferroelectrics 338, 17–32 (2006)

    Article  CAS  Google Scholar 

  8. R. Wang, R. Xie, K. Hanada, K. Matsusaki, H. Bando, M. Itoh, Phys. Status Solidi, A Appl. Res. 202, R57–R59 (2005)

    Article  CAS  Google Scholar 

  9. R. Wang, R.J. Xie, K. Hanada, K. Matsusaki, H. Bando, T. Sekiya, M. Itoh, Ferroelectrics 336, 39–46 (2006)

    Article  CAS  Google Scholar 

  10. Y. Guo, K. Kakimoto, H. Ohsato, Mater. Lett. 59, 241–245 (2005)

    Article  CAS  Google Scholar 

  11. Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121–4123 (2004)

    Article  CAS  Google Scholar 

  12. G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang, P. Qi, B.Q. Ming, J. Du, L.M. Zheng, S.J. Zhang, T.R. Shrout, Appl. Phys. Lett. 88, 212908 (2006)

    Article  CAS  Google Scholar 

  13. S.B. Lang, W. Zhu, L.E. Cross, Ferroelectrics 336, 15–21 (2006)

    Article  CAS  Google Scholar 

  14. H. Takao, Y. Saito, Y. Aoki, K. Horibuchi, J. Am. Ceram. Soc. 89, 1951–1956 (2006)

    Article  CAS  Google Scholar 

  15. S. Tashiro, K. Ishii, J. Ceram. Soc. Jpn., Int. ed. 114, 386–391 (2006)

    Article  CAS  Google Scholar 

  16. Y. Saito, H. Takao, in 12th US–Japan Seminar on Dielectric and Piezoelectric Ceramics, ed. By C. Wu, H. Kishi, C. Randall, P. Pinceloup, H. Funakubo, (Maryland, 2005), pp. 103–107

  17. M. Matsubara, K. Kikuta, S. Hirano, J. Appl. Phys. 97, 114105 (2005)

    Article  CAS  Google Scholar 

  18. M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, J. Am. Ceram. Soc. 88, 1190–1196 (2005)

    Article  CAS  Google Scholar 

  19. J. Yoo, J. Hong, H. Lee, Y. Jeong, B. Lee, H. Song, J. Kwon, Sens. Actuators, A, Phys. 126, 41–47 (2006)

    Article  CAS  Google Scholar 

  20. S.H. Choy, X.X. Wang, H.L.W. Chan, C.L. Choy, Appl. Phys. A 82, 715–720 (2006)

    Article  CAS  Google Scholar 

  21. Y. Yuan, S. Zhang, X. Zhou, J. Liu, Jpn. J. Appl. Phys. 45, 831–834 (2006)

    Article  CAS  Google Scholar 

  22. D. Lin, D. Xiao, J. Zhu, P. Yu, Appl. Phys. Lett. 88, 062901 (2006)

    Article  CAS  Google Scholar 

  23. X.X. Wang, X.G. Tang, H.L.W. Chan, Appl. Phys. Lett. 85, 91 (2004)

    Article  CAS  Google Scholar 

  24. Y. Hiruma, R. Aoyagi, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 43, 7556–7559 (2004)

    Article  CAS  Google Scholar 

  25. T. Takenaka, H. Nagata, Key Eng. Mater. 157–158, 57–64 (1999)

    Google Scholar 

  26. T. Takenaka, H. Nagata, J. Eur. Ceram. Soc. 25, 2693–2700 (2005)

    Article  CAS  Google Scholar 

  27. S.H. Choy, X.X. Wang, H.L.W. Chan, C.L. Choy, Ferroelectrics 336, 69–79 (2006)

    Article  CAS  Google Scholar 

  28. J.S. Song, S.J. Jeong, I.S. Kim, D.S. Lee, E.C. Park, Ferroelectrics 338, 3–8 (2006)

    Article  CAS  Google Scholar 

  29. J.T. Zeng, K.W. Kwok, H.L.W. Chan, J. Am. Ceram. Soc. 89, 2828–2832 (2006)

    CAS  Google Scholar 

  30. X. Wang, H.L.W. Chan, C.L. Choy, Solid State Commun. 125, 395–399 (2003)

    Article  CAS  Google Scholar 

  31. S. Zhao, G. Li, A. Ding, T. Wang, Q. Yin, J. Phys. D: Appl. Phys. 39 2277–2281 (2006)

    Article  CAS  Google Scholar 

  32. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236–2239 (1991)

    Article  CAS  Google Scholar 

  33. H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, Jpn. J. Appl. Phys. 42, 7401–7403 (2003)

    Article  CAS  Google Scholar 

  34. Y. Hiruma, Y. Makiuchi, R. Aoyagi, H. Nagata, T. Takenaka, Ceram. Trans. 174, 139–146 (2006)

    CAS  Google Scholar 

  35. L. Wu, D. Xiao, D. Lin, J. Zhu, P. Yu, Jpn. J. Appl. Phys. 44, 8515–8518 (2005)

    Article  CAS  Google Scholar 

  36. D. Lin, D. Xia, J. Zhu, P. Yu, Phys. Status Solidi, A Appl. Res. 202, R89–91 (2005)

    Article  CAS  Google Scholar 

  37. R. Wang, N. Tachibana, N. Miura, K. Hanada, K. Matsusaki, H. Bando, M. Itoh, Ferroelectrics 331, 135–139 (2006)

    Article  CAS  Google Scholar 

  38. M.D. Maeder, D. Damjanovic, N. Setter, J. Electroceramics 13, 385–392 (2004)

    Article  CAS  Google Scholar 

  39. W. Chen, Y. Li, Q. Xu, J. Zhou, J. Electroceramics 15, 229–235 (2005)

    Article  CAS  Google Scholar 

  40. D. Berlincourt, in Ultrasonic Transducer Materials: Piezoelectric Crystals and Ceramics, ed. By O.E. Mattiat (Plenum, London, 1971), Ch.2

    Google Scholar 

  41. H. Jaffe, J. Am. Ceram. Soc. 41, 494 (1958)

    Article  CAS  Google Scholar 

  42. D. Schofield, R.F. Brown, Can. J. Phys. 35, 594–607 (1957)

    CAS  Google Scholar 

  43. S.J. Zhang, R. Xia, T.R. Shrout, Unpublished

  44. Y. Doshida, H. Kishi, Y. Hattori, A. Makiya, S. Tanaka, K. Uematsu, T. Kimura, in 12th US–Japan Seminar on Dielectric and Piezoelectric Ceramics, ed. By C. Wu, H. Kishi, C. Randall, P. Pinceloup, H. Funakubo (Maryland, 2005), pp. 123–127

  45. R.E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 45, 209–213 (1962)

    Article  CAS  Google Scholar 

  46. G.H. Haertling, J. Am. Ceram. Soc. 50, 329–330 (1967)

    Article  CAS  Google Scholar 

  47. L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438–442 (1959)

    Article  CAS  Google Scholar 

  48. H. Du, Z. Li, F. Tang, S. Qu, Z. Pei, W. Zhou, Mater. Sci. Eng., B, Solid-state Mater. Adv. Technol. 131, 83–87 (2006)

    CAS  Google Scholar 

  49. J.F. Li, K. Wang, B.P. Zhang, L.M. Zhang, J. Am. Ceram. Soc. 89, 706–709, (2006)

    Article  CAS  Google Scholar 

  50. B.P. Zhang, J.F. Li, K. Wang, H. Zhang, J. Am. Ceram. Soc. 89, 1605–1609 (2006)

    Article  CAS  Google Scholar 

  51. G. Arlt, D. Hennings, G. de With, J. Appl. Phys. 58, 1619–1625, (1985)

    Article  CAS  Google Scholar 

  52. R. Zuo, J. Rodel, R. Chen, L. Li, J. Am. Ceram. Soc. 89, 2010–2015 (2006)

    Article  CAS  Google Scholar 

  53. S.Y. Chu, W. Water, Y.D. Juang, J.T. Liaw, Ferroelectrics 287, 23–33, (2003)

    Article  CAS  Google Scholar 

  54. S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Jpn. J. Appl. Phys. 43, L1072–L1074 (2004)

    Article  CAS  Google Scholar 

  55. S.J. Zhang, E.F. Alberta, R.E. Eitel, C.A. Randall, T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 2131–2139 (2005)

    Article  Google Scholar 

  56. IEEE Standards on Piezoelecricity, ANSI/IEE Standard 176, 1987

  57. G. Shirano, H. Danner, A. Pavlovie, R. Pepinsky, Phys. Rev. 93, 672–673 (1954)

    Article  Google Scholar 

  58. D. Berlincourt, IRE Trans. Ultrason. Eng. PGUE-4, 53–65 (1956)

    CAS  Google Scholar 

  59. S.J. Zhang, T.R. Shrout, H. Nagata, Y. Hiruma, T. Takenaka, IEEE Trans. Ultrason. Ferroelectr. Freq. Control (in press)

  60. B. Lewis, L.A. Thomas, Proc. Internat. Conf. Solid State Phys., Electronics Telecommnus. Brussels 4(Pt. 2), 883–890, (1960)

    CAS  Google Scholar 

  61. S. Triebwasser, Phys. Rev. 114, 63–70 (1959)

    Article  CAS  Google Scholar 

  62. S.J. Zhang, R. Xia, T.R. Shrout, J. Electroceramics. (in press)

  63. S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang, J.F. Wang, J. Appl. Phys. 100, 104108 (2006)

    Google Scholar 

  64. N. Setter, ABC of piezoelectricity and piezoelectric materials, in Piezoelectric Materials in Devices, ed. By N. Setter (Lausanne, Switzerland, 2002), pp. 1–28

    Google Scholar 

  65. R.C. Pohanka, P.L. Smith, in Electronic Ceramics: Properties, Devices, and Applications, ed. By L.M. Levinson (Marcel Dekker, Inc., NY, 1987), Ch. 2

    Google Scholar 

  66. K. Carl, K.H. Hardtl, Ferroelectrics 17, 473–486 (1978)

    CAS  Google Scholar 

  67. Y. Yuan, S. Zhang, X. Zhou, J. Liu, J. Mater. Sci. 41, 565–567 (2006)

    Article  CAS  Google Scholar 

  68. Y.J. Son, Y.G. Choi, J.C. Kwon, K.W. Cho, Y.M. Kim, S.Y. Kweon, T.H. Hong, Y.G. Lee, S.L. Ryu, M.S. Yoon, S.C. Ur, Mater. Sci. Forum 510–511, 538–541 (2006)

    Article  Google Scholar 

  69. X.P. Jiang, L.Z. Li, M. Zeng, H.L.W. Chan, Mater. Lett. 60, 1786–1790 (2006)

    Article  CAS  Google Scholar 

  70. S.J. Zhang, J. Luo, R. Xia, P.W. Rehrig, C.A. Randall, T.R. Shrout, Solid State Commun. 137, 16–20 (2006)

    Article  CAS  Google Scholar 

  71. K. Lubitz, C. Schuh, T. Steinkopf, A. Wilff, in 7th International Conference on New Actuators, ed. By H. Borgmann (Messe Bremen GmbH, Bremen, 2000), pp. 58–61

    Google Scholar 

Download references

Acknowledgment

This work supported by Office of Naval Research (ONR) and National Institutes of Health (NIH) under grant number P41-RR11795. The authors also thanks to Prof. Tadashi Takenaka and Dr. Hajime Nagata for the BNBK samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Shrout.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10832-007-9095-5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrout, T.R., Zhang, S.J. Lead-free piezoelectric ceramics: Alternatives for PZT?. J Electroceram 19, 113–126 (2007). https://doi.org/10.1007/s10832-007-9047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9047-0

Keywords

Navigation