Skip to main content
Log in

Development of piezoelectric actuators for active X-ray optics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Piezoelectric actuators are widely utilised in adaptive optics to enable mirrors having an actively controlled reflective surface for the purpose of the wavefront correction by reducing the effects of rapidly changing optical distortion. Two new prototype adaptive X-ray optical systems are under development with the aim of approaching the fundamental diffraction limit. One proposed technology is microstructured optical arrays (MOAs) involving two or four piezoelectric strips bonded to a silicon wafer to produce a micro-focused X-ray source for biological applications, and which uses grazing incidence reflection through consecutive aligned arrays of channels obtained using deep silicon etching. Another technology is large scale optics which uses a thin shell mirror bonded with 20–40 piezoelectric actuators for the next generation of X-ray telescopes with an aim to achieve a resolution greater than that currently available by Chandra (0.5"). PZT-based piezoelectric actuators are being developed in this programme according to the design and implementation of the proposed mirror and array structures. Viscous plastic processing is chosen for the preparation of the materials system, which is subsequently formed and shaped into the suitable configurations. Precise controls on the thickness, surface finish and the curvature are the key factors to delivering satisfactory actuators. Unimorph type piezoelectric actuators have been proposed for the applications and results are presented regarding the fabrication and characterisation of such piezo-actuators, as well as the related design concepts and comparison to modelling work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.G. Bifano, R.K. Mali, J.K. Dorton, J. Perreault, N. Vandelli, M.N. Horenstein, D.A. Castanon, Opt. Eng. 36, 1354 (1997) doi:10.1117/1.601598

    Article  CAS  Google Scholar 

  2. F. Forbes, F. Roddier, G. Poczulp, C. Pinches, G. Sweeny, R. Dueck, J. Phys. E. Sci. Instrum. 22, 402 (1989) doi:10.1088/0022-3735/22/6/016

    Article  Google Scholar 

  3. Y. Hishinuma, E.H. Yang, J. Microelectromech. Syst. 15, 370 (2006) doi:10.1109/JMEMS.2006.872229

    Article  CAS  Google Scholar 

  4. H. Kueppers, T. Leuerer, U. Schnakenberg, W. Mokwa, M. Hoffmann, T. Schneller, U. Boettger, R. Waser, Sens. Actuator A-Phys. 97–98, 680 (2002) doi:10.1016/S0924-4247(01)00850-0

    Article  Google Scholar 

  5. F.F.C. Duval, S.A. Wilson, G. Ensell, N.M.P. Evanno, M.G. Cain, R.W. Whatmore, Sens. Actuator A-Phys. 133, 35 (2007) doi:10.1016/j.sna.2006.03.035

    Article  Google Scholar 

  6. S. Sherrit, H.D. Wiederick, B.K. Mukherjee, Proc. SPIE 3037, 158 (1997) doi:10.1117/12.271326

    Article  CAS  Google Scholar 

  7. Y. Jeon, J.S. Chung, K. No, J. Electroceram. 4, 195 (2000) doi:10.1023/A:1009924113335

    Article  CAS  Google Scholar 

  8. J. Ma, W. Cheng, J. Am. Ceram. Soc. 85, 1735 (2002) doi:10.1111/j.1151-2916.2002.tb00344.x

    Article  CAS  Google Scholar 

  9. R.A. Dorey, R.W. Whatmore, J. Electroceram. 12, 19 (2004) doi:10.1023/B:JECR.0000033999.74149.a3

    Article  CAS  Google Scholar 

  10. X.H. Xu, B.Q. Li, Y. Feng, J.R. Chu, J. Micromech. Microeng. 17, 2439 (2007) doi:10.1088/0960–1317/17/12/008

    Article  Google Scholar 

  11. B. Su, D.H. Pearce, T.W. Button, J. Eur. Ceram. Soc. 21, 2005 (2001) doi:10.1016/S0955-2219(01)00161-3

    Article  CAS  Google Scholar 

  12. W.J. Clegg, K. Kendall, N.M. Alford, T.W. Button, J.D. Birchall, Nature 347, 455 (1990) doi:10.1038/347455a0

    Article  CAS  Google Scholar 

  13. A. Michette, T. Button, C. Dunare, C. Feldman, M. Folkard, D. Hart, C. McFaul, G.R. Morrison, W. Parkes, S. Pfauntsch, A.K. Powell, D. Rodriguez-Sanmartin, S. Sahraei, T. Stevenson, B. Vojnovic, R. Willingaled, D. Zhang, Proc. SPIE 6705, 670502 (2007) doi:10.1117/12.735500

    Article  Google Scholar 

  14. P. Doel, C. Atkins, S. Thompson, D. Brooks, J. Yao, C. Feldman, R. Willingale, T. Button, D. Zhang, A. James, Proc. SPIE 6705, 67050M (2007) doi:10.1117/12.734608

    Article  Google Scholar 

  15. C. Atkins, P. Doel, J. Yao, D. Brooks, S. Thompson, R. Willingale, C. Feldman, T. Button, D. Zhang, A. James, Proc. SPIE 6721, 67210T (2007) doi:10.1117/12.782955

    Article  Google Scholar 

  16. B. Su, T.W. Button, J. Mater. Process. Technol. 209, 153 (2009) doi:10.1016/j.jmatprotec.2008.01.046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by a Basic Technologies Grant from the UK Engineering and Physical Sciences Research Council (EPSRC) (DO4880X). The authors would like to thank the help and advice offered by fellow members of the SXO consortium and especially the technical contributions of Carl Meggs and Geoffrey Dolman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dou Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Rodriguez-Sanmartin, D., Button, T.W. et al. Development of piezoelectric actuators for active X-ray optics. J Electroceram 27, 1–6 (2011). https://doi.org/10.1007/s10832-009-9566-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-009-9566-y

Keywords

Navigation