Skip to main content
Log in

Influence of substitution on dielectric diffuseness in Ba(1-x)Bi(2+2x/3)Nb2O9 ceramics prepared by chemical precursor decomposition method

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Barium bismuth niobate, Ba(1-x)Bi(2+2x/3)Nb2O9 (BBN with x = 0.0, 0.1, 0.2, 0.3, 0.4) ceramic powders in the nanometer range were prepared by chemical precursor decomposition method (CPD). The single phase layered perovskite was prepared throughout the composition range studied. No intermediate phase was found during heat treatment at and above 600°C. The crystallite size and the particle size, obtained from XRD and TEM respectively, were in the range of 15–30 nm. The addition of Bi2O3 substantially improved the sinterability associated with high density (96%) which was otherwise difficult in the case of pure BaBi2Nb2O9 (BBN x = 0.0). The sintering was done at 900°C for 4 h. The relative permittivity of BBN ceramics at both room temperature and in the vicinity of the temperature of maximum permittivity (Tm) has increased significantly with increase in bismuth content and loss is also decreased to a certain level of bismuth doping. Tm increased with increase in Bi2O3. The diffuseness (γ) in the phase transition was found to increase from 1.54 to 1.98 with the increase in Ba2+ substitution level from x = 0.0 to x = 0.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.A.P. de Araujo, L.D. Mc Millan, J.D. Cuchiaro, M.C. Scott, J.F. Scott, Nature, London 374, 627–629 (1995)

    Article  Google Scholar 

  2. D.P. Vijay, S.B. Desu, J Electrochem Soc 140, 2640–2645 (1993)

    Article  CAS  Google Scholar 

  3. B. Aurivillius, Ark Kemi 5, 39–47 (1952)

    CAS  Google Scholar 

  4. K. Amanuma, T. Hase, Y. Miyasaka, Appl Phys Lett 66, 221–233 (1995)

    Article  CAS  Google Scholar 

  5. T.C. Chen, T.K. Li, X.B. Zhang, S.B. Desu, J Mater Res 12, 2165–2174 (1997)

    Article  CAS  Google Scholar 

  6. E.C. Subbarao, Phys Rev 122, 804–807 (1961)

    Article  CAS  Google Scholar 

  7. J.F. Scott, C.A.P. de Araujo, Science 246, 1400–1405 (1989)

    Article  CAS  Google Scholar 

  8. S.E. Cummins, L.E. Cross, J Appl Phys 39, 2268–2274 (1968)

    Article  CAS  Google Scholar 

  9. G.A. Smolenskii, A.I. Agranovskaya, S.N. Popov, V.A. Isupov, Soviet Phys-Tech Phys 3, 1981–1982 (1958)

    CAS  Google Scholar 

  10. G.A. Smolenskii, V.A. Bokov, V.A. Isupov, N.N. Krainik, R.E. Pasynkov, A.I. Sokolov, N.K. Yushin, Ferroelectrics and related phenomena (Gordon and Breach, New York, 1981)

    Google Scholar 

  11. J.F. Scott, Ferroelectrics Rev 1, 1–129 (1998)

    Article  CAS  Google Scholar 

  12. Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, F. Izumi, Appl Phys Lett 74, 1904–1906 (1999)

    Article  CAS  Google Scholar 

  13. S.R. Dhage, Y. Khollam, S.B. Dhespande, V. Ravi, Mater Res Bull 38, 1601–1605 (2003)

    Article  CAS  Google Scholar 

  14. A. Bencan, P. Boullay, J.P. Mercurio, Solid State Sci 6, 547–551 (2004)

    Article  CAS  Google Scholar 

  15. S.P. Gaikwad, V. Samuel, R. Pasricha, V. Ravi, Mater Lett 58, 3729–3731 (2004)

    Article  CAS  Google Scholar 

  16. A. Laha, S.B. Krupanidhi, Appl Phys Lett 77, 3818–3820 (2000)

    Article  CAS  Google Scholar 

  17. A. Laha, S.B. Krupanidhi, J Appl Phys 92, 415–420 (2002)

    Article  CAS  Google Scholar 

  18. C. Kartik, K.B.R. Verma, Mater Sci Eng B 129, 245–250 (2006)

    Article  Google Scholar 

  19. C. Kartik, K.B.R. Verma, M. Maglione, J. Etourneau, J Appl Phys 101, 014106/1–014106/6 (2007)

    Google Scholar 

  20. J.S. Kim, C. Cheon, H.S. Shim, C.H. Lee, J Eur Ceram Soc 21, 1295–1298 (2001)

    Article  CAS  Google Scholar 

  21. A.B. Panda, A. Pathak, M. Nandagoswami, P. Pramanik, Mater Sci Eng B 97, 275–282 (2003)

    Article  Google Scholar 

  22. R. Jain, V. Gupta, A. Mansingh, K. Sreenivas, Mater Sci Eng B 112, 54–58 (2004)

    Article  Google Scholar 

  23. B.J. Kalaiselvi, R. Sridarane, R. Murugan, Ceram Int 32, 467–470 (2006)

    Article  CAS  Google Scholar 

  24. H. Tsai, P. Lin, T. Tseng, Appl Phys Lett 72, 1787–1789 (1998)

    Article  CAS  Google Scholar 

  25. E.C. Subbarao, J Chem Phys 34, 695–696 (1961)

    Article  CAS  Google Scholar 

  26. J.A. Cho, S.E. Park, T.K. Song, M.H. Kim, H.S. Lee, S.S. Kim, J Electroceram 13, 515–518 (2004)

    Article  CAS  Google Scholar 

  27. B.J. Isamunandar, J. Kennedy, Mater Chem 9, 541–544 (1999)

    Article  Google Scholar 

  28. M.E.V. Miranda, M. Costa, A.L. Avdeev, J.L. Kholkin, J. Baptista, Eur Ceram Soc 21, 1303–1306 (2001)

    Article  CAS  Google Scholar 

  29. R. Macquart, B.J. Kennedy, T. Vogt, C.J. Howard, Phys Rev B 66, 212102/1–212102/4 (2002)

    Article  CAS  Google Scholar 

  30. A.L. Kholkin, M. Avdeev, M.E.V. Costa, J.L. Baptista, Appl Phys Lett 79, 662–664 (2001)

    Article  CAS  Google Scholar 

  31. M. Kakihana, J Sol-Gel Sci Technol 6, 7–55 (1996)

    Article  CAS  Google Scholar 

  32. D.B. Beach, J.S. Morrell, Z.B. Xue, E.D. Specht, Integrat Ferroelectrics 28, 29–36 (2000)

    Article  CAS  Google Scholar 

  33. A. Pissenberger, M. Leibetseder, G. Gritzner, Adv Sci Technol 17, 227–232 (1999)

    CAS  Google Scholar 

  34. A.L. Campos, T. Mazon, J.A. Varela, M.A. Zaghete, M. Cilense, Key Eng. Mater. 149–154 (189–191) (Advanced Powder Technology II), 149–154 (2001)

  35. Q.F. Zhou, H.L.W. Chan, C.L. Choy, J Non-Cryst Solids 254, 106–111 (1999)

    Article  CAS  Google Scholar 

  36. A. Pathak, S. Mohapatra, S. Mohapatra, S.K. Biswas, D. Dhak, N.K. Pramanik, A. Tarafdar, P. Pramanik, Am Ceram Soc Bull 83, 9301–9306 (2004)

    CAS  Google Scholar 

  37. D. Dhak, P. Pramanik, J Am Ceram Soc 89, 1014–1021 (2006)

    Article  CAS  Google Scholar 

  38. D. Dhak, S.K. Biswas, P. Pramanik, J Eur Ceram Soc 26, 3717–3723 (2006)

    Article  CAS  Google Scholar 

  39. P. Dhak, D. Dhak, P. Pramanik, Solid State Sci 10, 1936–1946 (2008)

    Article  Google Scholar 

  40. O.E.S. Godinho, Graciliano de Oliveira Neto, “A New Spot Test for Fluoride,” Mikrochimica Acta [Wien], 119–122 (1974)

  41. B.E. Warren, X-ray Diffraction, (Adison-Wesley, Reading, MA, 1969, pp. 253 and 258; Amorphous Materials, Wiley, New York, 1973, pp. 687 and 635; P. Scherrer, GÖttinger Nachichent 2, 1918, pp. 98

  42. D. Dhak, P. Pramanik, Solid State Sci 9, 57–64 (2007)

    Article  Google Scholar 

  43. CRC Handbook of Chemistry and Physics, Internet Version 2005, David R. Lide, ed., <http://www.hbcpnetbase.com>, CRC Press, Boca Raton, FL, 2005

  44. D. Dhak, P. Dhak, P. Pramanik, Appl Surface Sci 254, 3078–3092 (2008)

    Article  CAS  Google Scholar 

  45. S.E. Park, J.A. Cho, T.K. Song, M.H. Kim, S.S. Kim, H.S. Lee, J Electroceram 13, 51 (2004)

    Article  CAS  Google Scholar 

  46. Y. Ebina, T. Sasaki, M. Watanabe, Solid State Ionics 151, 177–182 (2002)

    Article  CAS  Google Scholar 

  47. R.N.P. Choudhary, B.K. Choudhary, J Mater Sci Letts 9, 394 (1990)

    Article  CAS  Google Scholar 

  48. R. Sridarane, B.J. Kalaiselvi, B. Akila, S. Subramanian, R. Murugan, Physica B 357, 439 (2005)

    CAS  Google Scholar 

  49. P. Dhak, D. Dhak, K. Pramanik, P. Pramanik, Solid State Sci 10, 1936–1946 (2008)

    Article  Google Scholar 

  50. K. Uchino, S. Nomura, Ferroelectrics 44, 55–61 (1982)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors thank Council of Scientific and Industrial Research and Department of Science and Technology, India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debasis Dhak or Prasanta Dhak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhak, D., Dhak, P. & Pramanik, P. Influence of substitution on dielectric diffuseness in Ba(1-x)Bi(2+2x/3)Nb2O9 ceramics prepared by chemical precursor decomposition method. J Electroceram 27, 56–65 (2011). https://doi.org/10.1007/s10832-011-9650-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-011-9650-y

Keywords

Navigation