Skip to main content
Log in

High conductivity of mixed phase Al-substituted Li7La3Zr2O12

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Al-substituted Li7La3Zr2O12 (LLZ:Al) was synthesized via conventional solid state reaction. Different dwell times at sintering temperature of 1200 °C led to a varying Li content in LLZ:Al which significantly affected the Li-ion conductivity. Electrochemical impedance spectroscopy and X-ray diffraction were used to characterize the sintered pellets which showed a maximum total ionic conductivity of ~3 × 10−4 S cm−1 at room temperature although the samples were composed of cubic and tetragonal LLZ:Al, with the tetragonal phase as its major phase. Inductively coupled plasma optical emission spectroscopy revealed that the Li content steadily decreased from 7.5 to 6.5 Li per formula unit with increasing sintering time. The highest conductivity was observed from the sample with the lowest Li concentration at 6.5 per formula unit. Scanning electron microscopy images revealed the formation of large grains, about 500 μm in diameter, which additionally could be the reason for achieving high total Li-ion conductivity. Electrochemical tests showed that mixed phase LLZ:Al is stable against metallic Li up to 8 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat. Mater. 10, 682 (2011)

    Article  Google Scholar 

  2. F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisako, Adv. Mater. 17, 918 (2005)

    Article  Google Scholar 

  3. H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiß, M. Schlosser, Angew. Chem. Int. Ed. 47, 755 (2008)

    Article  Google Scholar 

  4. R. Prasada Rao, S. Adams, Phys. Status Solidi A 208, 1804 (2011)

    Article  Google Scholar 

  5. P. Birke, F. Salam, S. Dӧring, W. Weppner, Solid State Ionics 118, 149 (1999)

    Article  Google Scholar 

  6. X.M. Wu, X.H. Li, S.W. Wang, Z. Wang, Y.H. Zhang, M.F. Xu, Z.Q. He, Thin Solid Films 425, 103 (2003)

    Article  Google Scholar 

  7. S. Hasegawa, N. Imanishi, T. Zhang, J. Xie, A. Hirano, Y. Takeda, O. Yamamoto, J. Power Sources 189, 371 (2009)

    Article  Google Scholar 

  8. Y. Shimonishi, T. Zhang, P. Johnson, N. Imanishi, A. Hirano, Y. Takeda, O. Yamamoto, N. Sammes, J. Power Sources 195, 6187 (2010)

    Article  Google Scholar 

  9. F. Ding, W. Xu, Y. Shao, X. Chen, Z. Wang, F. Gao, X. Liu, J.-G. Zhang, J. Power Sources 195, 6187 (2010)

    Article  Google Scholar 

  10. V. Thangadurai, H. Kaack, W.J.F. Weppner, J. Am. Ceram. Soc. 86, 437 (2003)

    Article  Google Scholar 

  11. J. Percival, E. Kendrick, P.R. Slater, Solid State Ionics 179, 1666 (2008)

    Article  Google Scholar 

  12. Y.X. Gao, X.P. Wang, W.G. Wang, Z. Zhuang, D.M. Zhang, Q.F. Fang, Solid State Ionics 181, 1415 (2010)

    Article  Google Scholar 

  13. H. Buschmann, J. Dӧlle, S. Berendts, A. Kuhn, P. Bottke, M. Wilkening, P. Heitjans, A. Senyshyn, H. Ehrenberg, A. Lotnyk, V. Duppel, L. Kienle, J. Janek, Phys. Chem. Chem. Phys. 13, 19378 (2011)

    Article  Google Scholar 

  14. J. Awaka, N. Kijima, H. Hayakawa, J. Akimoto, J. Solid State Chem. 182, 2046 (2009)

    Article  Google Scholar 

  15. J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, J. Akimoto, Chem. Lett. 40, 60 (2011)

    Article  Google Scholar 

  16. M. Xu, M.S. Park, J.M. Lee, T.Y. Kim, Y.S. Park, E. Ma, Phys. Rev. B 85, 052301 (2012)

    Article  Google Scholar 

  17. E.J. Cussen, J. Mater. Chem. 20, 5167 (2010)

    Article  Google Scholar 

  18. A. Logeat, T. Kohler, U. Eisele, B. Stiaszny, A. Harzer, M. Tovar, A. Senyshyn, H. Ehrenberg, B. Kozinsky, Solid State Ionics 206, 33 (2012)

    Article  Google Scholar 

  19. S. Adams, R.P. Rao, J. Mater. Chem. 22, 1426 (2012)

    Article  Google Scholar 

  20. Y. Li, J.-T. Han, C.-A. Wang, S.C. Vogel, H. Xie, M. Xu, J.B. Goodenough, J. Power Sources 209, 278 (2012)

    Article  Google Scholar 

  21. I. Kokal, M. Somer, P.H.L. Notton, H.T. Hintzen, Solid State Ionics 185, 42 (2011)

    Article  Google Scholar 

  22. E.A. Il’ina, O.L. Andreev, B.D. Antonov, N.N. Batalov, J. Power Sources 201, 169 (2012)

    Article  Google Scholar 

  23. J. Wolfenstine, E. Rangasamy, J.L. Allen, J. Sakamoto, J. Power Sources 208, 193 (2012)

    Article  Google Scholar 

  24. N. Bernstein, M.D. Johannes, K. Hoang, Phys. Rev. Lett. 109, 205702 (2012)

    Article  Google Scholar 

  25. E. Rangasamy, J. Wolfenstine, J. Sakamoto, Solid State Ionics 206, 28 (2012)

    Article  Google Scholar 

  26. F. Tietz, T. Wegener, M.-T. Gerhards, M. Giarola, G. Mariotto, Solid State Ionics 230, 77 (2013)

    Article  Google Scholar 

  27. A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86–748 (2004)

  28. C.A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, W. Weppner, Inorg. Chem. 50, 1089 (2011)

    Article  Google Scholar 

  29. Y. Li, J.-T. Han, C.-A. Wang, H. Xie, J.B. Goodenough, J. Mater. Chem. 22, 15357 (2012)

    Article  Google Scholar 

  30. H. Xie, J.A. Alonso, Y. Li, M.T. Fernandez-Díaz, J.B. Goodenough, Chem. Mater. 23, 3587 (2011)

    Article  Google Scholar 

  31. A. Kuhn, M. Wilkening, L. Robben, J.-Y. Choi, F. Tietz, P. Heitjans, Z. Phys. Chem 226, 525 (2012)

    Article  Google Scholar 

  32. S. Kumazaki, Y. Iriyama, K. Kim, R. Murugan, K. Tanabe, K. Yamamoto, T. Hirayama, Z. Ogumi, Electrochem. Commun. 13, 509 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the Helmholtz Gemeinschaft Deutscher Forschungszentren e.V. in the frame of the granted projects “Elektrochemische Speicher im System – Zuverlässigkeit und Integration“and “Helmholtz-Initiative für Mobile / Stationäre Energiespeichersysteme“, is gratefully acknowledged. ICP-OES measurements were carried out at the Central Institute for Engineering, Electronics and Analytics (ZEA-3) at Forschungszentrum Jülich and are also gratefully acknowledged. Cathode material LiMn0.5Fe0.5PO4 was sponsored by Hirose tech CO., Ltd., Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Long Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CL., Dashjav, E., Hammer, EM. et al. High conductivity of mixed phase Al-substituted Li7La3Zr2O12 . J Electroceram 35, 25–32 (2015). https://doi.org/10.1007/s10832-015-9988-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-015-9988-7

Keywords

Navigation