Skip to main content

Advertisement

Log in

High piezoelectricity associated with crossover from nonergodicity to ergodicity in modified Bi0.5Na0.5TiO3 relaxor ferroelectrics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The structural origin of high piezoelectricity in perovskite-type relaxor ferroelectrics is a fundamental issue that remains elusive for decades. In this study, high and unstable piezoelectricity for the poled ceramics, accompanied with a crossover from a nonergodic relaxor to an ergodic relaxor state at room temperature, has been observed for 0.95(Bi0.5Na0.5)1-x (Li0.5Sm0.5) x TiO3–0.05BaTiO3 ceramics with x = 0.06. The result suggests that the high piezoelectric activity origins from the electric field-induced-ordered nanodomains. The rapid loss of piezoelectricity stems from the reversibility of the ordered nanodomains after removing applied electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241 (1987)

    Article  Google Scholar 

  2. Z. Kutnjak, J. Petzelt, R. Blinc, The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956 (2006)

    Article  Google Scholar 

  3. K. Uchino, Relaxor ferroelectric devices. Ferroelectrics 151, 321 (1994)

    Article  Google Scholar 

  4. J. Cieminski, H. Beige, High-signal electrostriction in ferroelectric materials. J. Phys. D. Appl. Phys. 24, 1182 (1991)

    Article  Google Scholar 

  5. A. G. Khachaturyan, Ferroelectric solid solutions with morphotropic boundary: rotational instability of polarization, metastable coexistence of phases and nanodomain adaptive states. Philos. Mag. 90, 37 (2010)

    Article  Google Scholar 

  6. Y. Yan, A. Kumar, M. Correa, K. -H. Cho, R. S. Katiyar, S. Priya, Phase transition and temperature stability of piezoelectric properties in Mn-modified Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics. Appl. Phys. Lett. 100, 152902 (2012)

  7. A. A. Bokov, Z.-G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31 (2006)

    Article  Google Scholar 

  8. D. Damjanovic, A morphotropic phase boundary system based on polarization rotation and polarization extension. Appl. Phys. Lett. 97, 062906 (2010)

    Article  Google Scholar 

  9. Y. -Z. Wang, L. Chen, H. -Y. Wang, X. F. Zhang, J. Fu, X. -M. Xiong, J. -X. Zhang, Development of “fragility” in relaxor ferroelectrics. J. Appl. Phys. 115, 054106 (2014)

  10. L. Xie, Y. L. Li, R. Xu, Z. Y. Cheng, X. Y. Wei, X. Yao, C. L. Jia, K. Urban, A. A. Bokov, Z. -G. Ye, J. Zhu, Static and dynamic polar nanoregions in relaxor ferroelectric Ba(Ti1-x Sn x )O3 system at high temperature. Phys. Rev. B 85, 014118 (2012)

  11. J. Rödel, W. Jo, C. T. P. Seifert, E.-M. Anton, T. Granzow, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153 (2009)

    Article  Google Scholar 

  12. T. R. Shout, S. J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 113 (2007)

    Article  Google Scholar 

  13. S. T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rödel, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system, Appl. Phys. Lett. 91, 112906(2007)

  14. H. -S. Han, W. Jo, J. –K, Kang, C.-W Ahn, I. W. Kim, K. -K. Ahn, and J. –S. Lee, Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics, J. Appl. Phys. 113, 154102 (2013)

  15. T. Takenaka, Piezoelectric properties of some lead-free ferroelectric ceramics. Ferroelectrics 230, 87 (2011)

    Article  Google Scholar 

  16. J. Shi, H. Fan, X. Liu, and Q. Li, Ferroelectric hysteresis loop scaling and electric-field-induced strain of Bi0.5Na0.5TiO3–BaTiO3 ceramics, Phys. Status Solidi A 211, 2388(2014).

  17. J. Shi, H. Fan, X. Liu, Q. Li, Giant strain response and structure evolution in (Bi0.5Na0.5)0.945−x (Bi0.2Sr0.70.1) x Ba0.055TiO3 ceramics. J. Eur. Ceram. Soc. 34, 3675 (2014)

    Article  Google Scholar 

  18. J. Shi, H. Fan, X. Liu, and Q. Li, Defect-dipole alignment and strain memory effect in poled Li doped (Bi0.5Na0.4K0.1)0.98Ce0.02TiO3 ceramics, J. Mater. Sci: Mater. Electron. 26, 9409(2015)

  19. Ng. Quyet, L. H. Bac, D. Odkhuu, and D. D. Dung, Effect of Li2CO3 addition on the structural, optical, ferroelectric, and electric-field-induced strain of lead-free BNKT-based ceramics, J. Phys. Chem. Solid. 85, 148(2015).

  20. D. Schütz, M. Deluca, W. Krauss, A. Feteira, T. Jackson, K. Reichmann, Lone-pair-induced covalency as the cause of temperature-and field-induced instabilities in bismuth sodium titanate. Adv. Funct. Mater. 22, 2285 (2012)

    Article  Google Scholar 

  21. R. Theissmann, R. L. A. Schmitt, J. Kling, R. Schierholz, K. A. Schönau, H. Fuess, M. Knapp, H. Kungl, M. J. Hoffmann, Nanodomains in morphotropic lead zirconate titanate ceramics: on the origin of the strong piezoelectric effect. J. Appl. Phys. 102, 024111 (2007)

    Article  Google Scholar 

  22. Y. M. Jin, Y. U. Wang, A. G. Khachaturyan, Adaptive ferroelectric states in systems with low domain wall energy: tetragonal microdomains. J. Appl. Phys. 94, 3629 (2003)

    Article  Google Scholar 

  23. H. Guo, C. Ma, X. Liu, X. Tan, Electrical poling below coercive field for large piezoelectricity. Appl. Phys. Lett. 102, 092902 (2013)

    Article  Google Scholar 

  24. D. Xue, Y. Zhou, J. Gao, X. Ding, X. Ren, A comparison between tetragonal-rhombohedral and tetragonal-orthorhombic phase boundaries on piezoelectricity enhancement. EPL 100, 17010 (2012)

    Article  Google Scholar 

  25. J. Fu, R. Zuo, Z. Xu, High piezoelectric activity in (Na, K)NbO3 based lead-free piezoelectric ceramics: contribution of nanodomains. Appl. Phys. Lett. 99, 062901 (2011)

    Article  Google Scholar 

  26. T. Sluka, A. K. Tagantsev, D. Damjanovic, M. Gureev, N. Setter, Enhanced electromechanical response of ferroelectrics duo to charged domain walls. Nat. Commun. 3, 748 (2012)

    Article  Google Scholar 

  27. L. -F. Wang, J. -M. Liu, Piezoelectric and ferroelectric cluster size in relaxor ferroelectrics. Appl. Phys. Lett. 91, 092908 (2007)

  28. R. Ahluwalia, T. Lookman, A. Saxena, W. Cao, Domain-size dependence of piezoelectric properties of ferroelectrics. Phys. Rev. B 72, 014112 (2005)

    Article  Google Scholar 

  29. W. Zeng, X. Zhou, J. Chen, J. Liao, C. Zhou, Z. Cen, T. Yang, H. Yang, Q. Zhou, G. Chen, C. Yuan, Origin of high piezoelectric activity in perovskite ferroelectric ceramics. Appl. Phys. Lett. 104, 242910 (2014)

    Article  Google Scholar 

  30. R. Garg, B. N. Rao, A. Senyshyn, P. S. R. Krishna, and R. Ranjan, Lead-free piezoelectric system (Na0.5Bi0.5)TiO3-BaTiO3: Equilibrium structures and irreversible structural transformations driven by electric field and mechanical impact, Phys. Rev. B 88, 014103 (2013).

  31. J. E. Daniels, W. Jo, J. Rödel, and J. L. Jones, Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in 93 %(Bi0.5Na0.5)TiO3–7 % BaTiO3 piezoelectric ceramic, Appl. Phys. Lett. 95, 032904 (2009).

  32. W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H. -J. Kleebe, A. J. Bell, J. Rödel, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3 -6 mol % BaTiO3. J. Appl. Phys. 110, 074106 (2011)

  33. T. -Y. Kim, H. M. Jang, B-site vacancy as the origin of spontaneous normal-to-relaxor ferroelectric transitions in La-modified PbTiO3. Appl. Phys. Lett. 77(3824) (2000)

  34. C. Lei, A. A. Bokov, Z.-G. Ye, Ferroelectric to relaxor crossover and dielectric phase diagram the BaTiO3-BaSnO3 system. J. Appl. Phys. 101(084105) (2007)

  35. Y. Liu, R. L. Withers, B. Nguyen, Structurally frustrated polar nanoregions in BaTiO3-based relaxor. Appl. Phys. Lett. 91, 152907 (2007)

    Article  Google Scholar 

  36. W. Kleemann, Random field in relaxor ferroelectrics-a jubilee review. J. Adv. Dielectric 2, 1241001 (2012)

    Article  Google Scholar 

  37. W. Zhao, Zuo, J. Fu, and M. Shi, Large strains accompanying field-induced ergodic phase-polar ordered phase transformations in Bi(Mg0.5Ti0.5 )O3–PbTiO3 –(Bi0.5 Na0.5)TiO3 ternary system, J. Eur. Ceram. Soc. 34, 2299 (2014)

Download references

Acknowledgments

Part of this work was financially supported by the National Nature Science Foundation of China (11564007, 61561015, and 61361007) and Guangxi Key Laboratory of Information Materials (1310001-Z) and the Natural Science Foundation of Guangxi (Grants No. 2012GXNSFGA60002 and 2015GXNSFAA 139250) and Open Project of Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities (DGN201504).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingning Li or Changrong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Xu, J., Li, Q. et al. High piezoelectricity associated with crossover from nonergodicity to ergodicity in modified Bi0.5Na0.5TiO3 relaxor ferroelectrics. J Electroceram 37, 23–28 (2016). https://doi.org/10.1007/s10832-016-0036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-016-0036-z

Keywords

Navigation