Skip to main content

Advertisement

Log in

Intelligent design of induction motors by multiobjective fuzzy genetic algorithm

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In this paper an approach using multi-objective fuzzy genetic algorithm (MFGA) for optimum design of induction motors is presented. Single-objective genetic algorithm optimization is compared with the MFGA optimization. The efficiency of those algorithms is investigated on motor’s performance. The comparison results show that MFGA is able to find more compromise solutions and is promising for providing the optimum design. Besides, a design tool is developed to evaluate and analysis the steady-state characteristics of induction motors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A1m , A b :

Cross-sectional area of stator and rotor conductor, respectively

A r , A g :

Cross-sectional area of end-ring and air-gap, respectively

Cu cost :

Cost of unit weight of copper

D e :

Stator diameter at centers of stator slots

D o :

Stator outer diameter

D r :

Rotor diameter

Fe cost :

Cost of unit weight of iron

f ew :

End winding factor

L1, L2:

Axial length of stator and rotor, respectively

m :

Number of phase

p fe :

Density of the iron sheet

p sw , p rw :

Density of stator and rotor conductors, respectively

P cu :

Total copper losses of stator and rotor

P fe :

Total iron losses

s :

Slip

SF :

Stacking factor

S1, S2:

Number of stator and rotor slot, respectively

w a , w r :

Rotor end rings axial and radial width, respectively

References

  • Bartz-Beielstein, T., Mehnen, J., Naujoks, B., Schmitt, K., & Zibold, D. (2004). KEA—a software package for development, analysis and application of multiple objective evolutionary algorithms. Technical Report, Reihe comput. Intelli. Collaborative Research Center, University of Dortmound.

  • Bianchi N., Bolognani S. (1998) Design optimization of electric motors by genetic algorithm. IEE Proceedings Electric Power Applications 145: 475–483

    Article  Google Scholar 

  • Bingul, Z., Sekmen, S., Palaniappan, S., & Sabatto, S. (2000). Genetic algorithms applied to real time multiobjective optimization problems. In Proceedings of the IEEE Southeast Congress Conference.

  • Boldea I., Nasar S.A. (2002) The induction machine handbook. CRC press, Boca Raton

    Google Scholar 

  • Chapman S.J. (2002) Electric machinery and power system fundamentals. McGraw-Hill, New York

    Google Scholar 

  • Çunkaş M., Akkaya R. (2006) Design optimization of induction motor by genetic algorithm and comparison with existing motor. Mathematical and Computational Applications 11(3): 193–203

    Google Scholar 

  • Çunkaş M., Akkaya R., Bilgin O. (2007) Cost optimization of submersible motors using a genetic algorithm and a finite element method. International Journal of Advanced Manufacturing Technology 33: 223–232. doi:10.1007/s00170-006-0458-x

    Article  Google Scholar 

  • Faiz J., Sharifian M.B.B. (2001) Optimal design of three phase induction motors and their comparison with a typical industrial motor. International Journal of Computers and Electrical Engineering 27: 133–144. doi:10.1016/S0045-7906(00)00010-0

    Article  Google Scholar 

  • Faiz J., Sharifian M.B.B., Keyhani A., Proca A. (2000) Performance comparison of optimally designed induction motors with aluminum and copper squirrel-cages. Electric Machinery and Power Systems 28: 1195–1207. doi:10.1080/073135600449062

    Article  Google Scholar 

  • Fci R., Fuchs E.F., Huaugh H. (1989) Comparison of two optimization techniques as applied to three-phase induction motor design. IEEE Transactions on Energy Conversion 4(4): 651–659. doi:10.1109/60.41724

    Article  Google Scholar 

  • Göl Ö., Sobhi-Najafabadi B. (2005) Use of evolutionary techniques for multi-objective optimisation of electromotion devices. Journal of Materials Processing Technology 161: 300–304. doi:10.1016/j.jmatprotec.2004.07.040

    Article  Google Scholar 

  • Hamarat S., Leblebicioğlu K., Ertan H.B. (1998). Comparison of deterministic and non-deterministic optimization algorithms for design optimization of electrical machines. ICEM, Istanbul, Turkey, pp. 1477–1482.

  • Holland, J. H. (1970). Robust algorithms for adaptation set in a general formal framework, In Proceedings of the IEEE Symposium on Adaptive Processes in Decision and Control (vol. XVII, Sect. 5.1). NY: ACM Press.

  • Hsu, L. Y., Tsai, M. C., & Huang, C. C. (2003). Efficiency optimization of brushless permanent magnet motors using penalty genetic algorithms. IEEE Electric Machines and Drives Conference, IEMDC’03 (vol. 1, pp. 365–369).

  • Huang H.Z., Gu Y.K., Du X. (2006) An interactive fuzzy multi-objective optimization method for engineering design. Engineering Applications of Artificial Intelligence 19: 451–460. doi:10.1016/j.engappai.2005.12.001

    Article  Google Scholar 

  • Kim M.K., Lee C.G., Jung H.K. (1998) Multiobjective optimal design of three-phase induction motor using improved evolution strategy. IEEE Transactions on Magnetics 34: 2980–2983. doi:10.1109/20.717696

    Article  Google Scholar 

  • Liuzzi G., Lucidi S., Parasiliti F., Villani M. (2003) Multiobjective optimization techniques for the design of induction motors. IEEE Transactions on Magnetics 39: 1261–1264. doi:10.1109/TMAG.2003.810193

    Article  Google Scholar 

  • Minghua Y., Changwen X. (1994) Multiobjective fuzzy optimization of structures based on generalized fuzzy decision-making. Computers and Structures 53(2): 411–417. doi:10.1016/0045-7949(94)90213-5

    Article  Google Scholar 

  • Mirzaeian B., Moallem M., Tahani V., Lucas C. (2002) Multiobjective optimization method based on a genetic algorithm for switched reluctance motor design. IEEE Transactions on Magnetics 38: 1524–1527. doi:10.1109/20.999126

    Article  Google Scholar 

  • Pillay P., Nolan R., Hague T. (1997) Application of Genetic algorithms to motor parameter determination for transient torque calculations. IEEE Transactions on Industry Applications 33(5): 1273–1282. doi:10.1109/28.633806

    Article  Google Scholar 

  • Sbalzarini, I. B., Müller, S., & Koutsakos, P. (2000). Multiobjective optimization using evolutionary algorithms, Center for Turbulence Research, Proceedings of Summer Programs (pp. 63–74).

  • Shih C.J., Lai T.K. (1994) Fuzzy weighting optimization with several objective functions in structural design. Computers and Strutures 52(5): 917–924

    Article  Google Scholar 

  • Sudhoff, S. D., Cale, J., Cassimere, B., & Swinney, M. (2005). Genetic algorithm based design of a permanent magnet synchronous machine. Electric Machines and Drives, IEEE International Conference (pp. 1011–1019).

  • Tan K.C., Lee T.H., Khoo D., Khoor E.F. (2001) A multiobjective evolutionary algorithm toolbox for computer-aided multiobjective optimization. IEEE Transactions on Systems, Man, and Cybernetics-Part B. Cybernetics 31(4): 537–556

    Article  Google Scholar 

  • Trebi-Ollennu A., White B.A. (1997) Multiobjective fuzzy genetic algorithm optimization approach to nonlinear control system design. IEE Proceedings of Control Theory and Applications 144: 137–142. doi:10.1049/ip-cta:19971031

    Article  Google Scholar 

  • Veinott C.G. (1959) Theory and design of small induction motors. McGraw-Hill, New York

    Google Scholar 

  • Wieczorek J.P., Göl Ö., Michalewicz Z. (1998) An evolutionary algorithm for the optimal design of induction motors. IEEE Transactions on Magnetics 34(6): 3882–3887. doi:10.1109/20.728298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Çunkaş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çunkaş, M. Intelligent design of induction motors by multiobjective fuzzy genetic algorithm. J Intell Manuf 21, 393–402 (2010). https://doi.org/10.1007/s10845-008-0187-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-008-0187-0

Keywords

Navigation