Skip to main content
Log in

Model development for quality features of resistance spot welding using multi-objective Taguchi method and response surface methodology

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In this research, the effect of parameters in Resistance Spot Welding (RSW) on the weld zone development was first investigated using Taguchi Method. Further, the RSW parameters were to be optimized based on multiple quality features, focusing on weld nugget and Heat Affected Zone using multi-objective Taguchi Method (MTM). The optimum welding parameter for MTM was obtained using Multi Signal to Noise Ratio and the significant level was further analyzed using Analysis of Variance. Lastly, Response Surface Methodology was employed to develop the mathematical model for predicting the weld zone development. The experimental study was conducted under varied welding current, weld time and hold time. To validate the predicted model, experimental confirmation test was conducted for plate thickness of 1 and 1.5 mm. Based on the results, the developed model can be effectively used to predict the size of weld zone which can improve the welding quality and performance in RSW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi B., Mahlooji H. (2012) Improving response surface methodology by using artificial neural network and simulated anneling. Expert Systems with Application 39: 3461–3468

    Article  Google Scholar 

  • Anawa E. M., Olabi A. G. (2008) Optimization of tensile strength of ferritic/austenitic laser welded components. Optic and Laser in Engineering 46: 571–577

    Article  Google Scholar 

  • Antony J. (2001) Simultaneous optimisation of multiple quality characteristics in manufacturing processes using taguchi’s quality loss function. International Journal of Advanced Manufacturing Technology 17: 134–138

    Article  Google Scholar 

  • Aslan N. (2008) Multi-objective optimization of some process parameters of a multi-gravity separator for chromite concentration. Separation and Purification Technology 64: 237–241

    Article  Google Scholar 

  • Benyounis K. Y., Olabi A. G., Hashmi M. S. J. (2008) Multi-response optimization of CO2 laser-welding process of austenitic stainless steel. Optic Laser Technology 40: 76–87

    Article  Google Scholar 

  • Berrichi A., Amodeo L., Yalaoui F., Chatelet E., Mezghiche M. (2009) Bi-objective optimization algorithms for joint production and maintenance scheduling: Application to the parallel machine problem. Journal of Intelligent Manufacturing 20(4): 389–400

    Article  Google Scholar 

  • Darwish S. M., Al-Dekhial S. D. (1999) Statistical models for spot welding of commercial aluminium sheets. International Journal of Machine Tools & Manufacture 39: 1589–1610

    Article  Google Scholar 

  • Dubey A. K., Yadava V. (2008a) Multi-objective optimisation of laser beam cutting process. Optics & Laser Technology 40: 562–570

    Article  Google Scholar 

  • Dubey A. K., Yadava V. (2008b) Multi-objective optimisation of Nd:YAG laser cutting of nickel-based superalloy sheet using orthogonal array with principal component analysis. Optics & Laser Technology 46: 124–132

    Article  Google Scholar 

  • Elangovan K., Balasubramaniam V., Babu S. (2009) Predicting tensile strength of friction stir welded AA6061 aluminum alloys joints by a mathematical model. Materials and Design 30: 188–193

    Article  Google Scholar 

  • Eisazadeh H., Hamedi M., Halvaee A. (2010) New parametric study of nugget size in resistance spot welding process using finite element method. Materials and Design 31: 149–157

    Article  Google Scholar 

  • Esme U. (2009) Application of Taguchi method for the optimization of resistance spot welding process. The Arabian Journal for Science and Engineering 34: 519–528

    Google Scholar 

  • Fraley S., Oom M., Terrien B., Date J. Z. (2006) Design of experiments via taguchi methods: Orthogonal arrays. The Michigan Chemical Process Dynamic and Controls Open Text Book, USA

    Google Scholar 

  • Ghoreishi M. (2006) Statistical analysis of repeatability in laser percussion drilling. International Journal of Advanced Manufacturing Technology 29: 70–78

    Article  Google Scholar 

  • Ghoreishi M., Atkinson J. (2002) A comparative experimental study of machining characteristics in vibratory, rotary and vibro-rotary electro-discharge machining. Journal of Materials and Process Technology 120: 374–384

    Article  Google Scholar 

  • Ghoreishi M., Low D. K. Y., Li L. (2002) A comparative statistical analysis of hole taper and circularity in laser percussion drilling. International Journal of Machine Tool Manufacturing 42: 985–995

    Article  Google Scholar 

  • Gill S. S., Singh R., Singh J., Singh H. (2012) Adaptive neuro-fuzzy inference system modeling of cryogenically treated AISI M2 HSS turning tool for estimation of flank wear. Expert System with Applications 39: 4171–4180

    Article  Google Scholar 

  • Gunaraj V., Murugan N. (1999) Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. Journal of Materials and Processing Technology 88: 266–275

    Article  Google Scholar 

  • Hamedi M., Pashazadeh H. (2008) Numerical study of nugget formation in resistance spot welding. International Journal of Mechanis 2: 11–15

    Google Scholar 

  • Hou T. H., Su C. H., Liu W. L. (2007) Parameters optimization of a nano-particle wet milling process using the taguchi method, response surface method and genetic algorithm. Powder Technology 173: 153–162

    Article  Google Scholar 

  • Joshi S. N., Pande S. S. (2011) Intelligent process modeling and optimization of die-sinking electric discharge machining. Applied Soft Computing 11: 2743–2755

    Article  Google Scholar 

  • Juang S. C., Tarng Y. S. (2002) Process parameters selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel. Journal of Materials and Process Technology 122: 33–37

    Article  Google Scholar 

  • Koleva E. (2005) Electro beamweld parameters and thermal efficiency improvement. Vacuum Journal 77: 413–421

    Article  Google Scholar 

  • Kwak J. S. (2005) Application of Taguchi and response surface methodologies for geometric error in surface grinding process. International Journal of Machine Tools & Manufacture 45: 327–334

    Article  Google Scholar 

  • Lee H. K., Han H. S., Son K. J., Hong S. B. (2006) Optimization of Nd-YAG laser welding parameters for sealing small titanium tube ends. Journal of Material Science and Engineering 415: 149–155

    Article  Google Scholar 

  • Li, X., Yalaoui, F., Amodeo, L. & Chehade, H. (2012). Metaheuristic and Exact Methods to Solve a Multiobjective Parallel Machines Scheduling Problem. Journal Intelligent Manufacturing, doi:10.1007/s10845-010-0428

  • Luo Y., Li C., Xu H. (2011) Modeling of resistance spot welding process using nonlinear regression analysis and neural network approach on galvanized steel sheet. Advanced Material Research 291(294): 823–828

    Google Scholar 

  • Manurung Y. H. P., Muhammad N., Haruman E., Abas S. K., Tham G., Salleh K. M., Chau C. Y. (2010) Investigation on weld nugget and HAZ development of resistance spot welding using SYSWELD’s customized electrode meshing and experimental verification. Asian Journal of Industrial Engineering 2: 63–71

    Article  Google Scholar 

  • Malakooti B. (2000) Ranking and screening multiple criteria alternatives with partial information and use of ordinal and cardinal strength of preferences. IEEE Transactions on System, Man and Cybernetics, Part A 30(3): 355–369

    Article  Google Scholar 

  • Malakooti B. (2010) Independent, convergent and divergent decision behavior for interactive multiple objectives linear programming. Engineering Optimization 42: 325–346

    Article  Google Scholar 

  • Malakooti B. (2011) Systematic decision process for intelligent decision making. Journal of Intelligent Manufacturing 22(4): 627–642

    Article  Google Scholar 

  • Mohd Zain A., Haron H., Sharif S. (2011) Optimization of process parameters in the abrasive waterjet machining using integrated SA-GA. Applied Soft Computing 11: 5350–5359

    Article  Google Scholar 

  • Myers R. H., Montgomery D. C., Anderson-Cook C. M. (2009) Response surface methodology, 3rd ed. Wiley, New York

    Google Scholar 

  • Phadke M. S. (1989) Quality engineering using robust design. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Raissi S., Eslami Farsani R. (2009) Statistical process optimization through multi-response surface methodology. World Academy of Science, Engineering and Technology 51: 267–271

    Google Scholar 

  • Ross P. J. (1996) Taguchi techniques for quality engineering, 2nd ed. McGraw Hill, New York

    Google Scholar 

  • Rowlands H., Antony J. (2003) Application of design of experiments to a spot welding process. Assembly Automation 23: 273–279

    Article  Google Scholar 

  • Son J. S., Kim I. S., Kim H. H., Kim I. J., Kang B. Y., Kim H. J. (2007) A study on the prediction of bead geometry in the robotic. Journal of Mechanical Science and Technology 21: 1726–1731

    Article  Google Scholar 

  • Thakur A. G., Nandedkar V. M. (2010) Application of Taguchi method to determine resistance spot welding conditions of austenitic stainless steel AISI 304. Journal of Scientific & Industrial Research 69: 680–683

    Google Scholar 

  • Thakur A. G., Rao T. E., Mukhedkar M. S., Nandedkar V. M. (2010) Application of Taguchi method for resistance spot welding of galvanized steel. ARPN Journal of Engineering and Applied Science 5(11): 22–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yupiter H. P. Manurung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muhammad, N., Manurung, Y.H.P., Jaafar, R. et al. Model development for quality features of resistance spot welding using multi-objective Taguchi method and response surface methodology. J Intell Manuf 24, 1175–1183 (2013). https://doi.org/10.1007/s10845-012-0648-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-012-0648-3

Keywords

Navigation