Skip to main content
Log in

Process parameter optimization for laser-magnetic welding based on a sample-sorted support vector regression

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Magnetic field assisted laser welding (LW-MF) shows great potential in the jointing of large structures. The quality of the welding joint in LW-MF largely depends on the selection of process parameters. In this study, an integrated process parameter optimization framework is developed for magnetic field assisted laser welding. Firstly, Taguchi method is selected to generate sample points and the LW-MF experiments are carried out to obtain the bead geometrical characteristics. Secondly, a sample-sorted SVR (SS-SVR) metamodeling approach is developed to make full use of the already-acquired prediction error information for fitting the relationships between multiple process parameters and the bead geometrical characteristics. A detailed comparison between the developed SS-SVR metamodeling approach and existing SVR metamodeling approach for prediction accuracy is performed. Then, the particle swarm optimization is used to solve the process parameters optimization problem, in which the objective function values are predicted by the developed SS-SVR metamodel. Finally, verification experiment is conducted to verify the reliability of the obtained optimal process parameters. Results illustrate that the proposed integrated process parameter optimization framework is effective for obtaining the optimal process parameters and can be used in LW-MF for practical production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acar, E. (2010). Various approaches for constructing an ensemble of metamodels using local measures. Structural and Multidisciplinary Optimization, 42(6), 879–896.

    Article  Google Scholar 

  • Bachmann, M., Avilov, V., Gumenyuk, A., & Rethmeier, M. (2013). About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts. International Journal of Heat and Mass Transfer, 60, 309–321.

    Article  Google Scholar 

  • Bachmann, M., Avilov, V., Gumenyuk, A., & Rethmeier, M. (2014). Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel. Journal of Materials Processing Technology, 214(3), 578–591.

    Article  Google Scholar 

  • Bachmann, M., Avilov, V., Gumenyuk, A., & Rethmeier, M. (2016). Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields. International Journal of Thermal Sciences, 101, 24–34.

    Article  Google Scholar 

  • Bang, H., Bang, H., Na, M., Jeon, G., Kim, G.-S., & Kim, B. (2016). Application of taguchi approach to optimize laser-arc hybrid welding parameters of galvanized steel. Strength of Materials, 48(1), 146–151.

    Article  Google Scholar 

  • Benyounis, K. Y., Olabi, A. G., & Hashmi, M. S. J. (2005). Effect of laser welding parameters on the heat input and weld-bead profile. Journal of Materials Processing Technology, 164–165, 978–985.

    Article  Google Scholar 

  • Chaki, S., Bathe, R. N., Ghosal, S., & Padmanabham, G. (2015). Multi-objective optimisation of pulsed Nd: YAG laser cutting process using integrated ANN–NSGAII model. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-015-1100-2.

  • Chen, J., Wei, Y., Zhan, X., & Pan, P. (2017). Weld profile, microstructure, and mechanical property of laser-welded butt joints of 5A06 Al alloy with static magnetic field support. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-017-0268-3.

  • Clarke, S. M., Griebsch, J. H., & Simpson, T. W. (2005). Analysis of support vector regression for approximation of complex engineering analyses. Journal of Mechanical Design, 127(6), 1077.

    Article  Google Scholar 

  • Gao, X.-D., & Zhang, Y.-X. (2014). Prediction model of weld width during high-power disk laser welding of 304 austenitic stainless steel. International Journal of Precision Engineering and Manufacturing, 15(3), 399–405.

    Article  Google Scholar 

  • Gao, Z., Shao, X., Jiang, P., Cao, L., Zhou, Q., Yue, C., et al. (2016). Parameters optimization of hybrid fiber laser-arc butt welding on 316L stainless steel using kriging model and GA. Optics & Laser Technology, 83, 153–162.

    Article  Google Scholar 

  • Hu, X., Eberhart, R. C., & Shi, Y. (2003). Engineering optimization with particle swarmed. In Swarm Intelligence Symposium, SIS’03. Proceedings of the 2003 IEEE (pp. 53–57). IEEE

  • Huang, J., He, J., Yu, X., Li, C., & Fan, D. (2017). The study of mechanical strength for fusion-brazed butt joint between aluminum alloy and galvanized steel by arc-assisted laser welding. Journal of Manufacturing Processes, 25, 126–133.

    Article  Google Scholar 

  • Islam, M., Buijk, A., Rais-Rohani, M., & Motoyama, K. (2015). Process parameter optimization of lap joint fillet weld based on FEM–RSM–GA integration technique. Advances in Engineering Software, 79, 127–136.

    Article  Google Scholar 

  • Jiang, P., Cao, L., Zhou, Q., Gao, Z., Rong, Y., & Shao, X. (2016a). Optimization of welding process parameters by combining Kriging surrogate with particle swarm optimization algorithm. The International Journal of Advanced Manufacturing Technology, 86(9–12), 2473–2483.

    Article  Google Scholar 

  • Jiang, P., Wang, C., Zhou, Q., Shao, X., Shu, L., & Li, X. (2016b). Optimization of laser welding process parameters of stainless steel 316L using FEM, Kriging and NSGA-II. Advances in Engineering Software, 99, 147–160.

    Article  Google Scholar 

  • Katherasan, D., Elias, J. V., Sathiya, P., & Haq, A. N. (2014). Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm. Journal of Intelligent Manufacturing, 25(1), 67–76.

    Article  Google Scholar 

  • Li, Y., Zhang, Y., Bi, J., & Luo, Z. (2015). Impact of electromagnetic stirring upon weld quality of Al/Ti dissimilar materials resistance spot welding. Materials & Design, 83, 577–586.

    Article  Google Scholar 

  • Rong, Y., Xu, J., Cao, H., Zheng, H., Huang, Y., & Zhang, G. (2017). Influence of steady magnetic field on dynamic behavior mechanism in full penetration laser beam welding. Journal of Manufacturing Processes, 26, 399–406.

    Article  Google Scholar 

  • Rong, Y., Zhou, Q., Huang, Y., Chang, Y., Zhang, G., & Shao, X. (2015). Multi-objective optimization of laser brazing with the crimping joint using ANN and NSGA-II. The International Journal of Advanced Manufacturing Technology, 85(5–8), 1239–1247.

    Google Scholar 

  • Saravanan, S., Raghukandan, K., & Sivagurumanikandan, N. (2017). Pulsed Nd: YAG laser welding and subsequent post-weld heat treatment on super duplex stainless steel. Journal of Manufacturing Processes, 25, 284–289.

    Article  Google Scholar 

  • Sathiya, P., Panneerselvam, K., & Jaleel, M. A. (2012). Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm. Materials & Design, 36, 490–498.

    Article  Google Scholar 

  • Singh, A., Cooper, D. E., Blundell, N., Pratihar, D. K., & Gibbons, G. J. (2014). Modelling of weld-bead geometry and hardness profile in laser welding of plain carbon steel using neural networks and genetic algorithms. International Journal of Computer Integrated Manufacturing, 27(7), 656–674.

    Article  Google Scholar 

  • Srivastava, S., & Garg, R. K. (2017). Process parameter optimization of gas metal arc welding on IS:2062 mild steel using response surface methodology. Journal of Manufacturing Processes, 25, 296–305.

    Article  Google Scholar 

  • Taguchi, G. (1978). Performance analysis design. The International Journal of Production Research, 16(6), 521–530.

    Article  Google Scholar 

  • Verma, J., & Taiwade, R. V. (2017). Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments—A review. Journal of Manufacturing Processes, 25, 134–152.

    Article  Google Scholar 

  • Zhou, Q., Jiang, P., Shao, X., Gao, Z., Cao, L., Yue, C., et al. (2016a). Optimization of process parameters of hybrid laser–arc welding onto 316L using ensemble of metamodels. Metallurgical and Materials Transactions B, 47(4), 2182–2196.

    Article  Google Scholar 

  • Zhou, Q., Rong, Y., Shao, X., Jiang, P., Gao, Z., & Cao, L. (2016b). Optimization of laser brazing onto galvanized steel based on ensemble of metamodels. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-015-1187-5.

  • Zhou, Q., Shao, X., Jiang, P., Gao, Z., Zhou, H., & Shu, L. (2016c). An active learning variable-fidelity metamodelling approach based on ensemble of metamodels and objective-oriented sequential sampling. Journal of Engineering Design, 27(4–6), 205–231.

    Article  Google Scholar 

  • Zhou, Q., Shao, X., Jiang, P., Zhou, H., & Shu, L. (2015). An adaptive global variable fidelity metamodeling strategy using a support vector regression based scaling function. Simulation Modelling Practice and Theory, 59, 18–35.

    Article  Google Scholar 

  • Zhou, Q., Yang, Y., Jiang, P., Shao, X., Cao, L., Hu, J., et al. (2017a). A multi-fidelity information fusion metamodeling assisted laser beam welding process parameter optimization approach. Advances in Engineering Software, 110, 85–97.

    Article  Google Scholar 

  • Zhou, Q., Zhang, F., & Huang, X. (2017b). Aggregate multiple radial basis function models for identifying promising process parameters in magnetic field assisted laser welding. Journal of Manufacturing Processes, 28, 21–32.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61703385 and International S&T Cooperation Program of China (ISTCP) under Grant No. 2016YFE0121700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zhou, T. Process parameter optimization for laser-magnetic welding based on a sample-sorted support vector regression. J Intell Manuf 30, 2217–2230 (2019). https://doi.org/10.1007/s10845-017-1378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-017-1378-3

Keywords

Navigation