Skip to main content
Log in

Design of a Novel Fuzzy Sliding-Mode Control for Magnetic Ball Levitation System

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents the design of a novel fuzzy sliding-mode control (NFSMC) for the magnetic ball levitation system. At first, we examine the nonlinear dynamic models of the magnetic ball system, where the singular perturbation method is used. Next, we address the design schemes of sliding mode control (SMC) and traditional fuzzy sliding-mode control (FSMC), where two kinds of FSMCs are introduced. Then we provide the design steps of the NFSMC, where the Lyapunov stability analysis is also given. Finally, a magnetic ball levitation system is used to illustrate the effectiveness of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baily, E. and Arapostathis, A.: Simple sliding mode condition scheme applied to robot manipulator, Internat. J. Control. 45 (1987), 1197–1209.

    Google Scholar 

  2. Chen, T.-T. and Li, T.-H. S.: Integrated fuzzy GA-based simplex sliding-mode control, Internat. J. Fuzzy Systems 2(4) (2000), 267–277.

    Google Scholar 

  3. Cheng, D. K.: Field and Wave Electromagnetics, Addison-Wesley, New York, 1989, pp. 289–292.

    Google Scholar 

  4. Cho, D., Kato, Y., and Spilman, D.: Sliding mode and classical controllers in magnetic levitation system, IEEE Control Systems Mag. 13(1) (1993), 42–45.

    Google Scholar 

  5. Decarlo, R. A., Zak, S. H., and Matthews, G. P.: Variable structure control of nonlinear multivariable system: a Tutorial, Proc. IEEE 76(3) (1988), 212–232.

    Google Scholar 

  6. EL-Ghezawi, M. E., Zinober, A. S. I., and Billings, S. A.: Analysis and design of variable structure systems using a geometric approach, Internat. J. Control 39 (1983), 657–671.

    Google Scholar 

  7. Filippov, A. F.: Differential Equation with Discontinuous Right Sides, Kluwer Academic Publishers, Dordercht, 1988.

    Google Scholar 

  8. Furuta, K.: Sliding mode control for discrete system, Systems Control Letters (1990), 145–152.

  9. Goodyer, M. J., Henderson, R. I., and Judd, M.: The measurement of Magnus force and moment using a magnetically suspended wind tunnel model, IEEE Trans. Magnetics 11(5) (1975), 1514–1516.

    Google Scholar 

  10. Gupta, M. M. and Yamakawa, T.: Fuzzy Computing Theory, Hardware and Applications, Netherlands, 1991.

  11. Hajjaji, E. H. and Ouladsine, M.: Modeling and nonlinear control of magnetic levitation system, IEEE Trans. Indust. Electr. 48 (2001), 831–838.

    Google Scholar 

  12. Hung, J. Y.: Magnetic bearing control using fuzzy logic, IEEE Trans. Industry Appl. 31(6) (1995), 1492–1497.

    Google Scholar 

  13. Hung, J. Y., Gao, W., and Hung, J. C.: Variable structure control: A survey, IEEE Trans. Industrial Electronics 40 (1993), 2–22.

    Google Scholar 

  14. Hirota, K.: Industrial Applications of Fuzzy Technology, South Sea Int. Pre., 1993.

  15. Kilgore, W. A.: Comparison of digital controllers used in magnetic suspension and balance systems, NASA Contractor Report 182087, 1990.

  16. Kim, S. W. and Lee, J. J.: Design of a fuzzy controller with fuzzy sliding surface, Fuzzy Sets Systems 7 (1995), 359–367.

    Google Scholar 

  17. Kokotovic, P. V., Khalil, H. K., and O’Reilly, J.: Singular Perturbations Methods in Control: Analysis and Design, Academic Press, New York, 1986.

    Google Scholar 

  18. Kuo, B. C.: Automatic Control Systems, 6th edn, Prentice-Hall, Englewood Cliffs, NJ, 1991.

    Google Scholar 

  19. Li, J.-H. and Li, T.-H. S.: Multiloop control of thyristor-driven magnetic levitation system, Mechatronics 5(5) (1995), 469–481.

    Google Scholar 

  20. Li, J.-H., Li, T.-H. S., and Ou, T.-H.: Design and implementation of fuzzy sliding-mode controller for a wedge balancing system, J. Intelligent Robotic Systems (2003), to appear.

  21. Li, T.-H. S. and Sun, Y.-Y.: One model matching control to unmodeled high frequency dynamics, in: Proc. of 1989 ACC, Pittsburgh, 1989, pp. 1301–1303.

  22. Li, T.-H. S. and Shieh, M.-Y.: Switching-type fuzzy sliding mode control of a cart-pole system, Mechatronics 10(1/2) (2000), 91–109.

    Google Scholar 

  23. Li, T.-H. S. and Chiou, J.-S.: A new D-stability criterion of multiparameter singularly perturbed discrete systems, IEEE Trans. Circuits Systems I 49(8) (2002), 1226–1230.

    Google Scholar 

  24. Lin, C. E. and Jou, H. L.: Force model identification for magnetic suspension system via magnetic field measurement, IEEE Trans. Instrument Measurement 42 (1993), 767–771.

    Google Scholar 

  25. Lin, C. E. and Sheu, Y.-R.: A hybrid control approach for large-gap magnetic suspension system, J. Control Systems Technol. 2(1) (1994), 1–9.

    Google Scholar 

  26. Lin, C.-M. and Shiu, J.-F.: Adaptive fuzzy sliding-mode control for motor-toggle servomechanism, in: IEEE Internat. Conf. on Control Applications, Anchorage, AK, U.S.A., 2000, pp. 25–27.

  27. Lin, L.-C. and Gau, T.-B.: Feedback linearization and fuzzy control for conical magnetic bearings, IEEE Trans. Control Systems Technol. 5(4) (1997), 471–426.

    Google Scholar 

  28. Lu, Y.-S. and Chen, J.-S.: A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo systems, IEEE Trans. Indust. Electronics 41(5) (1994), 492–552.

    Google Scholar 

  29. O’Reilly, J.: Robustness of linear feedback control systems to unmodeled high-frequency dynamics, Internat. J. Control 44 (1986), 1077–1088.

    Google Scholar 

  30. Palm, R.: Sliding mode fuzzy control, IEEE Internat. Conf. Fuzzy Systems, San Diego, CA, 1992, pp. 519–526.

  31. Palm, R.: Robust control by fuzzy sliding mode, Automatica 30 (1994), 1429–1437.

    Google Scholar 

  32. Park, K. H., Ahn, K. Y., Kim, S. H., and Kwak, Y. K.: Wafer distribution system for a clean room using a novel magnetic suspension technique, IEEE/ASME Trans. Mechatronics 3(1) (1998), 73–78.

    Google Scholar 

  33. Regatos, G. G., Tzafestas, C. S., and Tzafestas, S. G.: Mobile robotic motion control in partially unknown environments using a sliding-mode fuzzy-logic control, Robotics Autonom. Systems 33 (2000), 1–11.

    Google Scholar 

  34. Škrjanc, I. and Matko, D.: Fuzzy predictive functional control in the state space domain, J. Intelligent Robotic Systems 31 (2001), 289–297.

    Google Scholar 

  35. Suytino, J., Kobayashi, F. H., and Dote, Y.: Variable-structured robust controller by fuzzy logic for servomotors, IEEE Trans. Indust. Electr. 40 (1993), 80–88.

    Google Scholar 

  36. Temeltas, H.: A fuzzy sliding mode controller for induction motor position control, in: Proc. of IEEE ISIE ‘98, Vol. 1, 1998, pp. 110–115.

  37. Tzafestas, S. G. and Regatos, G. G.: Design and stability analysis of a new sliding-mode fuzzy logic controller of reduced complexity, March. Intelligence Robotic Control 1(1) (1999), 27–41.

    Google Scholar 

  38. Tzafestas, S. G. and Regatos, G. G.: A simple robust sliding-mode fuzzy-logic controller of the diagonal type, J. Intelligent Robotic Systems 26(3/4) (1999), 353–388.

    Google Scholar 

  39. Utkin, V. I.: Sliding Modes and Their Application in Variable Structure Systems, MIR Publishers, Moscow, 1978.

    Google Scholar 

  40. Utkin, V. I.: Variable structure systems with sliding modes, IEEE Trans. Automat. Control 22 (1979), 212–222.

    Google Scholar 

  41. Utkin, V. I., Guldner, J., and Shi, J.: Sliding Mode Control in Electromechanical System, Taylor & Francis, London, 1999.

    Google Scholar 

  42. Wong, T. H.: Design of a magnetic levitation control system an undergraduate project, IEEE Trans. Education 29 (1986), 196–200.

    Google Scholar 

  43. Yamamura, S. and Yamaguchi, H.: Electromagnetic levitation system by means of salient-pole type magnets coupled with laminated slotless rails, IEEE Trans. Vehicular Technol. 39(1) (1990), 83–87.

    Google Scholar 

  44. Zadeh, L. A.: Outline of a new approach to analysis of complex system and decision process, IEEE Trans. Systems Man Cybernet. 3(1) (1973), 28–44.

    Google Scholar 

  45. Zadeh, L. A.: Fuzzy logic, IEEE Computer 21(4) (1988), 83–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzuu-Hseng S. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, CL., Li, TH.S. & Guo, N.R. Design of a Novel Fuzzy Sliding-Mode Control for Magnetic Ball Levitation System. J Intell Robot Syst 42, 295–316 (2005). https://doi.org/10.1007/s10846-004-3026-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-004-3026-3

Keywords

Navigation