Skip to main content
Log in

Reasoning with Qualitative Positional Information for Domestic Domains in the Situation Calculus

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, we present a thorough integration of qualitative representations and reasoning for positional information for domestic service robotics domains into our high-level robot control. In domestic settings for service robots like in the RoboCup@Home competitions, complex tasks such as “get the cup from the kitchen and bring it to the living room” or “find me this and that object in the apartment” have to be accomplished. At these competitions the robots may only be instructed by natural language. As humans use qualitative concepts such as “near” or “far”, the robot needs to cope with them, too. For our domestic robot, we use the robot programming and plan language Readylog, our variant of Golog. In previous work we extended the action language Golog, which was developed for the high-level control of agents and robots, with fuzzy set-based qualitative concepts. We now extend our framework to positional fuzzy fluents with an associated positional context called frames. With that and our underlying reasoning mechanism we can transform qualitative positional information from one context to another to account for changes in context such as the point of view or the scale. We demonstrate how qualitative positional fluents based on a fuzzy set semantics can be deployed in domestic domains and showcase how reasoning with these qualitative notions can seamlessly be applied to a fetch-and-carry task in a RoboCup@Home scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbib, M.: Schema theory. In: The Handbook of Brain Theory and Neural Networks, pp. 830–834. MIT Press (1998)

  2. Bhatt, M., Rahayu, J.W., Sterling, G.: Qualitative spatial reasoning with topological relations in the situation calculus. In: Sutcliffe, G., Goebel, R. (eds.) Proceedings of the Nineteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS), pp. 713–718. AAAI Press (2006)

  3. Bloch, I.: Spatial reasoning under imprecision using fuzzy set theory, formal logics and mathematical morphology. Int. J. Approx. Reason. 41(2), 77–95 (2006) (Advances in Fuzzy Sets and Rough Sets)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bloch, I., Saffiotti, A.: On the representation of fuzzy spatial relations in robot maps. In: Bouchon-Meunier, B., Foulloy, L., Yager, R. (eds.) Intelligent Systems for Information Processing, pp. 47–57. Elsevier, NL (2003)

  5. Bolloju, N.: Formulation of qualitative models using fuzzy logic. Decis. Support Syst. 17(4), 275–298 (1996)

    Article  Google Scholar 

  6. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level agent programming in the situation calculus. In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI-00), pp. 355–362. AAAI Press/The MIT Press (2000)

  7. Clementini, E., Felice, P.D., Hernandez, D.: Qualitative representation of positional information. Artif. Intell. 95(2), 317–356 (1997)

    Article  MATH  Google Scholar 

  8. Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: an overview. Fundam. Inform. 46(1–2), 1–29 (2001)

    MathSciNet  MATH  Google Scholar 

  9. De Giacomo, G., Lésperance, Y., Levesque, H.J.: ConGolog, a concurrent programming language based on situation calculus. Artif. Intell. 121(1–2), 109–169 (2000)

    Article  MATH  Google Scholar 

  10. Dominey, P.F., Boucher, J.D.: Developmental stages of perception and language acquisition in a perceptually grounded robot. Cogn. Syst. Res. 6(3), 243–259 (2005)

    Article  Google Scholar 

  11. Dubois, D., Prade, H.: An introduction to fuzzy systems. Clin. Chim. Acta 270(1), 3–29 (1998)

    Article  Google Scholar 

  12. Dutta, S.: Qualitative spatial reasoning: a semi-quantitative approach using fuzzy logic. In: Buchmann, A.P., Günther, O., Smith, T.R., Wang, Y.F. (eds.) Proceedings of the First Symposium on Design and Implementation of Large Spatial Databases (SSD-89). Lecture Notes in Computer Science, vol. 409, pp. 345–364. Springer (1989)

  13. Dylla, F., Kreutzmann, A.: Agent control by adaptive neighborhoods. In: Bhatt, M., Guesgen, H., Hazarika, S. (eds.) Proceedings of the InternationalWorkshop on Spatio-Temporal Dynamics, Co-located with the European Conference on Artificial Intelligence (ECAI-10), pp. 55–60. ECAI Workshop Proceedings, and SFB/TR 8 Spatial Cognition Report Series (2010)

  14. Dylla, F., Moratz, R.: Exploiting qualitative spatial neighborhoods in the situation calculus. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. Reasoning, Action, and Interaction. Lecture Notes in Computer Science, vol. 3343, pp. 304–322. Springer (2005)

  15. Ferrein, A.: golog.lua: towards a non-prolog implementation of GOLOG for embedded systems. In: Hoffmann, G. (ed.) Proceedings of the AAAI Spring Symposium on Embedded Reasoning (SS-10-04), pp. 20–28. AAAI Press (2010)

  16. Ferrein, A.: Robot controllers for highly dynamic environments with real-time constraints. Künstl. Intell. 24(2), 175–178 (2010)

    Article  Google Scholar 

  17. Ferrein, A., Lakemeyer, G.: Logic-based robot control in highly dynamic domains. Robot. Auton. Syst. 56(11), 980–991 (2008) (special issue on Semantic Knowledge in Robotics)

    Article  Google Scholar 

  18. Ferrein, A., Schiffer, S., Lakemeyer, G.: A fuzzy set semantics for qualitative fluents in the situation calculus. In: Proceedings of the International Conference on Intelligent Robotics and Applications (ICIRA’08). Lecture Notes in Computer Science, vol. 5314, pp. 498–509. Springer (2008)

  19. Ferrein, A., Schiffer, S., Lakemeyer, G.: Embedding fuzzy controllers into golog. In: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE-09), pp. 894–899. IEEE Press (2009)

  20. Ferrein, A., Steinbauer, G.: On the way to high-level programming for resource-limited embedded systems with GOLOG. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) Proceedings of the 2nd International Conference on Simulation, Modeling and Programming for Autonomous Robots (SIMPAR 2010). Lecture Notes in Computer Science, vol. 6472, pp. 229–240. Springer (2010)

  21. Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Frank, A.U., Campari, I., Formentini, U. (eds.) Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, pp. 162–178. Springer (1992)

  22. Freksa, C., Zimmermann, K.: On the utilization of spatial structures for cognitively plausible and efficient reasoning. In: IEEE International Conference on Systems Man and Cybernetics, pp. 261–266. IEEE Press (1992)

  23. Grosskreutz, H.: Probabilistic projection and belief update in the pGOLOG framework. In: Proceedings of the 2nd Cognitive Robotics Workshop (CogRob’00) at the 14th European Conference on Artificial Intelligence (ECAI’2000), pp. 34–41 (2000)

  24. Grosskreutz, H., Lakemeyer, G.: cc-Golog—an action language with continous change. Log. J. IGPL 11(2), 179–221 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hernandez, D.: Relative representation of spatial knowledge: the 2-d case. In: Mark, D.M., Frank, A.U. (eds.) Cognitive and Linguistic Aspects of Geographic Space, pp. 373–385. Kluwer, Dordrecht (1991)

    Google Scholar 

  26. Hernandez, D., Clementini, E., Felice, P.D.: Qualitative distances. In: Kuhn, W., Frank, A. (eds.) Spatial Information Theory: a Theoretical Basis for GIS. Lecture Notes in Computer Science, vol. 988, pp. 45–58. Springer (1995)

  27. Isermann, R.: On fuzzy logic applications for automatic control, supervision, and fault diagnosis. IEEE Trans. Syst. Man Cybern., Part A 28(2), 221–235 (1998)

    Article  Google Scholar 

  28. Jacobs, S., Ferrein, A., Lakemeyer, G.: Controlling unreal tournament 2004 bots with the logic-based action language golog. In: Young, R.M., Laird, J.E. (eds.) Proceedings of the First Artificial Intelligence and Interactive Digital Entertainment Conference, pp. 151–152. AAAI Press (2005)

  29. Levesque, H., Lakemeyer, G.: Cognitive robotics. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, chap. 23, pp. 869–886. Elsevier (2008)

  30. Levesque, H., Pirri, F., Reiter, R.: Foundations for a calculus of situations. Electron. Trans. Artif. Intell. (ETAI) 2(3–4), 159–178 (1998)

    MathSciNet  Google Scholar 

  31. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: Golog: a logic programming language for dynamic domains. J. Log. Program. 31(1–3), 59–84 (1997)

    Article  MATH  Google Scholar 

  32. Liu, H., Brown, D.J., Coghill, G.M.: Fuzzy qualitative robot kinematics. IEEE Trans. Fuzzy Syst. 16(3), 808–822 (2008)

    Article  Google Scholar 

  33. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intelligence. Mach. Intell. 4, 463–502 (1969)

    MATH  Google Scholar 

  34. McDermott, D., Davis, E.: Planning routes through uncertain territory. Artif. Intell. 22(2), 107–156 (1984)

    Article  Google Scholar 

  35. Mendel, J.: Fuzzy logic systems for engineering: a tutorial. Proc. IEEE 83(3), 345–377 (1995)

    Article  Google Scholar 

  36. Moratz, R., Dylla, F., Frommberger, L.: A relative orientation algebra with adjustable granularity. In: Proceedings of the Workshop on Agents in Real-Time and Dynamic Environments (IJCAI 05) (2005)

  37. Müller, R., Röfer, T., Lankenau, A., Musto, A., Stein, K., Eisenkolb, A.: Coarse qualitative descriptions in robot navigation. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition II, Integrating Abstract Theories, Empirical Studies, Formal Methods, and Practical Applications. Lecture Notes in Computer Science, vol. 1849, pp. 265–276. Springer (2000)

  38. Musto, A., Stein, K., Eisenkolb, A., Röfer, T., Brauer, W., Schill, K.: From motion observation to qualitative motion representation. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition II, Integrating Abstract Theories, Empirical Studies, Formal Methods, and Practical Applications. Lecture Notes in Computer Science, vol. 1849, pp. 115–126. Springer (2000)

  39. Nordvik, J.P., Smets, P., Magrez, P.: Fuzzy qualitative modeling. In: Bouchon, B., Saitta, L., Yager, R.R. (eds.) Uncertainty and Intelligent Systems: Proceedings of the 2nd International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Lecture Notes in Computer Science, vol. 313, pp. 231–238. Springer (1988)

  40. Passino, M., Yurkovich, S.: Fuzzy Control. Addison-Wesley-Longman (1998)

  41. Piaget, J.: The construction of reality in the child. J. Consult. Psychol. 19(1), 77–77 (1955)

    Google Scholar 

  42. Pommerening, F., Wölfl, S., Westphal, M.: Right-of-way rules as use case for integrating GOLOG and qualitative reasoning. In: Proceedings of the 32nd Annual German Conference on AI (KI 2009), pp. 468–475. Springer, New York Inc (2009)

    Google Scholar 

  43. Randell, D.A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Proceedings of the Third International Conference on Principles of Knowledge Representation and Reasoning (KR’92), pp. 165–176. Morgan Kaufmann (1992)

  44. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press (2001)

  45. Renz, J., Nebel, B.: Qualitative Spatial Reasoning Using Constraint Calculi. Handbook of Spatial Logics, pp. 161–215 (2007)

  46. Robinson, V.B.: Individual and multipersonal fuzzy spatial relations acquired using human-machine interaction. Fuzzy Sets Syst. 113(1), 133–145 (2000)

    Article  MATH  Google Scholar 

  47. Saffiotti, A.: Fuzzy logic in autonomous robotics: behavior coordination. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 573–578. IEEE Press (1997)

  48. Schiffer, S., Ferrein, A., Lakemeyer, G.: Football is coming home. In: Proceedings of the 2006 International Symposium on Practical Cognitive Agents and Robots (PCAR’06), pp. 39–50. ACM, New York, NY, USA (2006)

    Chapter  Google Scholar 

  49. Schiffer, S., Ferrein, A., Lakemeyer, G.: Fuzzy representations and control for domestic service robots in GOLOG. In: Iocchi, L., del Solar, J.R., van der Zant, T. (eds.) Domestic Service Robots in the Real World. Workshop Proceedings of the International Conference on Simulation, Modeling and Programming for Autonomous Robots (SIMPAR 2010), pp. 183–192. Darmstadt, Germany (2010)

  50. Schiffer, S., Niemüller, T., Doostdar, M., Lakemeyer, G.: Allemaniacs@home 2009 team description. In: Proceedings CD RoboCup 2009. Graz, Austria (2009)

  51. Schockaert, S., Cornells, C., De Cock, M., Kerre, E.: Fuzzy spatial relations between vague regions. In: Proc. 3rd International IEEE Conference on Intelligent Systems, pp. 221–226 (2006)

  52. Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1(1), 7–31 (1993)

    Article  Google Scholar 

  53. Tikk, D., Biro, G., Gedeon, T., Koczy, L., Yang, J.D.: Improvements and critique on Sugeno’s and Yasukawa’s qualitative modeling. IEEE Trans. Fuzzy Syst. 10(5), 596–606 (2002)

    Article  Google Scholar 

  54. van der Zant, T., Wisspeintner, T.: Robocup x: a proposal for a new league where robocup goes real world. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup. LNCS, vol. 4020, pp. 166–172. Springer (2005)

  55. van der Zant, T., Wisspeintner, T.: Robotic Soccer, chap. RoboCup@Home: Creating and Benchmarking Tomorrows Service Robot Applications, pp. 521–528. I-Tech Education and Publishing (2007)

  56. Yen, J., Lee, J.: Fuzzy logic as a basis for specifying imprecise requirements. In: IEEE International Conference on Fuzzy Systems, pp. 745–749 (1993)

  57. Zadeh, L.: Knowledge representation in fuzzy logic. IEEE Trans. Knowl. Data Eng. 1(1), 89–100 (1989)

    Article  Google Scholar 

  58. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schiffer.

Additional information

Part of the work was conducted while A. Ferrein was affiliated with the Robotics and Agents Research Lab at the University of Cape Town, South Africa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiffer, S., Ferrein, A. & Lakemeyer, G. Reasoning with Qualitative Positional Information for Domestic Domains in the Situation Calculus. J Intell Robot Syst 66, 273–300 (2012). https://doi.org/10.1007/s10846-011-9606-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-011-9606-0

Keywords

Navigation