Skip to main content
Log in

Design and Control of 3-DoF Spherical Parallel Mechanism Robot Eyes Inspired by the Binocular Vestibule-ocular Reflex

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

With the wide application of robot in unstructured environment, cognizing and understanding environmental information accurately is the key for robots to complete the task. Thus, visual stability problems in these robot control systems have become important design issues. In this paper, to solve the problem of vision instability caused by attitude variation of the robot working under bumpy environment, a bionic eyes system of active compensation for robot visual error is proposed inspired by the binocular VOR. The bionic vision system is developed based on features of oculomotor behaviors and bionic control algorithm of the binocular VOR. According to the behaviors features of eye movement, the bionic eye mechanism is designed by using a 3-DoF spherical parallel mechanism(SPM). Meanwhile, to improve the performance, the mechanism parameters of SPM are optimized by utilizing the worst-case performance index as the optimizing target in required workspace. An adaptive control model of the binocular VOR is established on neural control mechanisms of eye movement, and the model is used as the bionic control algorithm to drive and control the eye mechanism. The results indicate that the model can actively compensate the visual errors from postural changes of robot. Physical robot experiments also show that the system is robust even with bumpy environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, S., Li, Y., Kwok, N.M.: Active vision in robotic systems: a survey of recent developments [J]. Int. J. Robot. Res. 30(11), 1343–1377 (2011)

    Article  Google Scholar 

  2. Wang, X., et al.: Design and kinematic analysis of a novel humanoid robot eye using pneumatic artificial muscles [J]. J. Bionic Eng. 5(3), 264–270 (2008)

    Article  Google Scholar 

  3. Chen, H.P., Shen, X.J., Li, X.F., Jin, Y.S.: Bionic mosaic method panoramic image based on compound eye of fly [J]. J. Bionic Eng. 8(4), 440–448 (2011)

    Article  Google Scholar 

  4. Wolfe, T.B., Faulkner, M.G., Wolfaardt, J.: Development of a shape memory alloy actuator for a robotic eye prosthesis [J]. Smart Mater. Struct. 14, 759–768 (2005)

    Article  Google Scholar 

  5. Schultz, J., Ueda, J.: Nested Pizezoelectric cellular actuators for a biologically inspired camera positioning mechanism [J]. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1962-1967 (2011)

  6. Lee, Y.C., Lan, Y.C., Chu, C.Y., et al.: A Pan-Tilt orienting mechanism with parallel axes of flexural actuation [J]. IEEE/ASME Trans. Mechatron. 18(3), 1100–1112 (2013)

    Article  Google Scholar 

  7. Lee, J.S., Kim, D.K., Baek, S.W., et al.: Newly structured double excited two-degree-of- freedom motor for security camera [J]. IEEE Trans. Magn. 44(11), 4041–4044 (2008)

    Article  Google Scholar 

  8. Masahiko, H., Tomoaki, M., Shigeki T.: Development of spherical ultrasonic motor as a camera Actuator for pipe inspection robot [C]. In: Proceedings of the 2009 IEEE /RSJ International Conference on Intelligent Robots and Systems, pp. 2379–2384 (2009)

  9. Gu, J., Meng, M., Cook, A., Faulkner, M.G.: A study on natural movement of artificial eye implant [J]. Robot. Auton. Syst. 32(2), 153–161 (2000)

    Article  Google Scholar 

  10. Giorgio, C., Marco, M.: Models for the design of bioinspired robot eyes [J]. IEEE Trans. Robot. 24(1), 27–44 (2008)

    Article  Google Scholar 

  11. Villgrattner, T., Ulbrich, H.: Design and control of a compact high-dynamic camera-orientation system [J]. IEEE/ASME Trans. Mechatron. 16(2), 221–231 (2010)

    Article  Google Scholar 

  12. Cosselin, C.M., Pierre, E.St., Gagne, M.: On the development of the agile eye [J]. IEEE Robot. Autom. Mag. 3(4), 29–37 (1996)

    Article  Google Scholar 

  13. Bang, Y.B., Paik, J.K., Shin, B.H., Lee, C.: A three-degree-of freedom anthropomorphic oculomotor simulator [J]. Int. J. Control. Autom. Syst. 4(2), 227–235 (2006)

    Google Scholar 

  14. Robinson, D.A., Gordon, J.L., Gordon, S.E.: A model of the smooth pursuit eye movement system [J]. Biolog. Cybern. 55(1), 43–57 (1986)

    Article  Google Scholar 

  15. Zhang, X.L., Wakamatsu, H.: A unified adaptive oculomotor control model [J]. Int. J. Adapt. Control. Signal Process. 15(7), 697–713 (2001)

    Article  MATH  Google Scholar 

  16. Green, A.M., Angelaki, D.E.: Internal models and neural computation in the vestibular system [J]. Exp. Brain Res. 200(3–4), 197–222 (2010)

    Article  Google Scholar 

  17. Jean, L., Angelaki, D.E: The functional significance of velocity storage and its dependence on gravity [J]. Exp. Brain Res. 210(3–4), 407–422 (2011)

    Google Scholar 

  18. Cova, A.C., Galiana, H.L.: A bilateral model integrating vergence and the vestibule-ocular reflex [J]. Exp. Brain Res. 107(3), 435–521 (1996)

    Article  Google Scholar 

  19. Khojasteh, E., Galiana, H.L.: A nonlinear model for context-dependent modulation of the binocular VOR [J]. IEEE Trans. Biomed. Eng. 33(6), 986–995 (2006)

    Article  Google Scholar 

  20. Wilbur, W.P.C., Galiana, H.L.: A nonlinear model of the neural integrator improves detection of deficits in the human VOR [J]. IEEE Trans. Biomed. Eng. 57(5), 1012–1023 (2010)

    Article  Google Scholar 

  21. Ito, M.: Cerebellar circuitry as a neuronal machine [J]. Prog. Neurobiol. 78(3–5), 272–303 (2006)

    Article  Google Scholar 

  22. Ito, M.: Functional roles of neuropeptides in cerebellar circuits [J]. Neurosci. 162(3), 666–672 (2009)

    Article  Google Scholar 

  23. Tsagarakisa, N.G., Mettab, G., Sandinic, G., et al.: ICub: the design and realization of an open humanoid platform for cognitive and neuroscience research [J]. Adv. Robot. 21(10), 1151–1175 (2007)

    Article  Google Scholar 

  24. Cecilia, L., Francesco, P., Eliseo, S.M., et al.: An anthropomorphic robotic head for investigating gaze control [J]. Adv. Robot. 22(1), 57–89 (2008)

    Article  Google Scholar 

  25. Eliseo, S.M., Luigi, M., Cecilia, L., Paolo, D.: Bioinspired velocity control of fast gaze shifts on a robotic anthropomorphic head [J]. Adv. Robot. 25(1–2), 37–58 (2008)

    Google Scholar 

  26. Lubin, K., Stephane, V., Nicolas, F.: Steering by gazing: an efficient biomimetic control strategy for visually guided micro aerial vehicles [J]. IEEE Trans. Robot. 26(2), 307–319 (2010)

    Article  Google Scholar 

  27. Gu, Y.Z., Sato, M., Zhang, X.L.: An active stereo vision system based on neural pathways of human binocular motor system [J]. J. Bionic Eng. 4, 185–192 (2007)

    Article  Google Scholar 

  28. Lenz, A., Balakrishnan, T., Pipe, A.G., et al.: An adaptive gaze stabilization controller inspired by the vestibule-ocular reflex [J]. Bioinspiration & Biomimetics 3(035001), 1–11 (2008)

    Google Scholar 

  29. Dean, P., Anderson, S., Porrill, J., Jörntell, H.: An adaptive-filter model of cerebellar zone C3 as a basis for safe limb control? [J]. J. Physiol. 592.22, 5459–5474 (2013)

    Article  Google Scholar 

  30. Porrill, J., Dean, P., Anderson, S.: Adaptive filters and internal models: multilevel description of cerebellar function[J]. Neural Netw. 47, 134–149 (2013)

    Article  Google Scholar 

  31. Dean, P., Porrill, J., et al.: The cerebellar microcircuit as an adaptive filter: experimental and computational evidence [J]. Nat. Rev. Neurosci. 11, 30–43 (2010)

    Article  Google Scholar 

  32. Lenz, A., Anderson, S.R., Pipe, A.G., et al.: Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles [J]. IEEE Trans. Syst. Man Cybern. Part B 39(6), 1420–1433 (2009)

    Article  Google Scholar 

  33. Guitton, D., Volle, M.: Gaze control in humans: eye-head coordination during orienting movements to targets within and beyond the oculomotor range [J]. J. Neurophysiol 58(3), 427–459 (1987)

    Google Scholar 

  34. Huang, T., Zeng, X.J., Zeng, Z.P., Zhang, S.C.: Dimensional synthesis of spherical parallel manipulators [J]. Prog. Nat Sci. 11(1), 50–57 (2001)

    Google Scholar 

  35. LI, H.Y., Luo, J., et al.: Active compensation method of robot visual error based on Vestibule-ocular Reflex [J]. Robot. 33(1), 191–197 (2011)

    Article  Google Scholar 

  36. Shibata, T., Schaal, S.: Biomimetic gaze Stabilization based on feedback-error-learning with nonparametric regression networks [J]. Neural Netw. 14(2), 201– 216 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Luo, J., Huang, C. et al. Design and Control of 3-DoF Spherical Parallel Mechanism Robot Eyes Inspired by the Binocular Vestibule-ocular Reflex. J Intell Robot Syst 78, 425–441 (2015). https://doi.org/10.1007/s10846-014-0078-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0078-x

Keywords

Navigation