Skip to main content
Log in

A Review of Redundant Parallel Kinematic Mechanisms

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Parallel kinematic mechanisms (PKM) have received particular attention due to their higher stiffness, increased payload capacity, and agility, when compared to their serial counterparts. Despite these significant advantages, however, most PKM designs, typically, yield limited workspace, problematic singularities, and configuration-dependent stiffness. In response, mechanism redundancy has emerged as an effective tool to address these and other problems. In this paper, we present an in-depth discussion of past research on PKM redundancy. The methodical review of the pertinent literature, first, introduces the concept of redundancy based on the number of actuators and the number of degrees of freedom required to perform a task and, then, discusses the two main types of redundancy according to the mobility of the mechanism, i.e., kinematic and actuation redundancy. Subsequently, research on the design aspects of redundant PKMs, including the various criteria used for design optimization is detailed. Primary advantages of PKM redundancy include workspace enlargement, singularity elimination/ avoidance, and improved joint-torque distribution. In this paper, these advantages are discussed in contrast to the main challenges redundant mechanisms present, such as in motion planning and control, and calibration. Other issues of PKM redundancy, briefly, presented herein for completeness are fault-tolerance, reconfigurability, cable-driven and hyper-redundant PKMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Merlet, J., Gosselin, C.: Parallel mechanisms and robots, pp 269–285. Springer Handb. Robot. (2008)

  2. Wan, Y., Wang, G., Ji, S., Liu, J.: A survey on the parallel robot optimization. In: 2nd International Symposium on Intelligent Information Technology Application IITA, vol. 2, pp 655–659 (2008)

  3. Müller, A.: On the terminology and geometric aspects of redundant parallel mechanisms. Robotica 31(01), 137–147 (2013)

    Article  Google Scholar 

  4. Parsa, S.S., Carretero, J.A., Boudreau, R.: Internal redundancy: an approach to improve the dynamic parameters around sharp corners. Mech. Sci. 4(1), 233–242 (2013)

    Article  Google Scholar 

  5. Kong, X., Chablat, D., Caro, S., Yu, J., Gosselin, C.: Type synthesis of kinematically redundant 3T1R parallel mechanisms. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp V06AT07A047 1–9 (2013)

  6. Meng, X., Gao, F., Ge, Q.J.: Number synthesis of parallel robotic mechanisms. Mech. Based Des. Struct. Mach. 42(2), 211–228 (2014)

    Article  Google Scholar 

  7. Ryu, S.-J., Kim, J.W., Hwang, J.C., Park, C., Cho, H.S., Lee, K., Lee, Y., Cornel, U., Park, F.C., Kim, J.: Eclipse: an overactuated parallel mechanism for rapid machining. In: Parallel Kinematic Machines. Springer (1999)

  8. Cao, Y., Zhou, H., Li, B.K., Long, S., Liu, M.S.: Singularity elimination of stewart parallel mechanism based on redundant actuation. Adv. Mater. Res. 143, 308–312 (2011)

    Google Scholar 

  9. Yi, Y., McInroy, J.E., Jafari, F.: Optimum design of a class of fault tolerant isotropic Gough-Stewart platforms. Inproceedings of the IEEE International Conference on Robotics and Automation ICRA 5, 4963–4968 (2004)

    Google Scholar 

  10. Zoppi, M., Bruzzone, L., Molfino, R.M.: Position analysis of a class of translational parallel mechanisms. Int. J. Rob. Autom. 19(3), 111–116 (2004)

    Google Scholar 

  11. Kurtz, R., Hayward, V.: Multiple-goal kinematic optimization of a parallel spherical mechanism with actuator redundancy. Robot. Autom. IEEE Trans. 8(5), 644–651 (1992)

    Article  Google Scholar 

  12. Reboulet, C., Durand-Leguay, S.: Optimal design of redundant parallel mechanism for endoscopic surgery. In: Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, vol. 3, pp 1432–1437 (1999)

  13. Zhao, Y., Gao, F.: Dynamic formulation and performance evaluation of the redundant parallel mechanism. Robot. Comput. Integr. Manuf. 25(4), 770–781 (2009)

    Article  Google Scholar 

  14. Shin, H., Lee, S., Jeong, J.I., Kim, J.: Antagonistic stiffness optimization of redundantly actuated parallel mechanisms in a predefined workspace. Mechatronics, IEEE/ASME Trans. 18(3), 1161–1169 (2013)

    Article  Google Scholar 

  15. Wu, J., Chen, X., Li, T., Wang, L.: Optimal design of a 2-DOF parallel mechanism with actuation redundancy considering kinematics and natural frequency. Robot. Comput. Integr. Manuf. 29 (1), 80–85 (2013)

    Article  Google Scholar 

  16. Zanganeh, K.E., Angeles, J.: Mobility and position analyses of a novel redundant parallel mechanism. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp 3049–3054 (1994)

  17. Zanganeh, K.E., Angeles, J.: Instantaneous kinematics and design of a novel redundant parallel mechanism. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp 3043–3048 (1994)

  18. Cheng, H., Liu, G.F., Yiu, Y.K., Xiong, Z.H., Li, Z.X.: Advantages and dynamics of parallel mechanisms with redundant actuation, vol. 1 (2001)

  19. Boudreau, R., Nokleby, S.: Force optimization of kinematically-redundant planar parallel mechanisms following a desired trajectory. Mech. Mach. Theory 56, 138–155 (2012)

    Article  Google Scholar 

  20. Harib, K.H., Ullah, A.M.M.S., Hammami, A.: A hexapod-based machine tool with hybrid structure: kinematic analysis and trajectory planning. Int. J. Mach. Tools Manuf. 47(9), 1426–1432 (2007)

    Article  Google Scholar 

  21. Ebrahimi, I., Carretero, J.A., Boudreau, R.: Kinematic analysis and path planning of a new kinematically redundant planar parallel mechanism. Robotica 26(03), 405–413 (2008)

    Article  Google Scholar 

  22. Yuan, H., Courteille, E., Deblaise, D.: Static and dynamic stiffness analyses of cable-driven parallel robots with non-negligible cable mass and elasticity. Mech. Mach. Theory 85, 64–81 (2015)

    Article  Google Scholar 

  23. Le, A.Y., Mills, J.K., Benhabib, B.: Dynamic modeling and control design for a parallel-mechanism-based meso-milling machine tool. Robotica 32(04), 515–532 (2014)

    Article  Google Scholar 

  24. Mahmoodi, M., Mills, J.K., Benhabib, B.: Vibration modeling of parallel kinematic mechanisms (PKMs) with flexible links: admissible shape functions. Trans. Can. Soc. Mech. Eng. 39(1), 97–113 (2015)

    Google Scholar 

  25. Mahmoodi, M., Mills, J.K., Benhabib, B.: A modified integral resonant control scheme for vibration suppression of parallel kinematic mechanisms with flexible links. Int. J. Mechatronics Autom. 5(1), 44–57 (2015)

    Article  Google Scholar 

  26. Zhang, D., Gao, Z., Su, X., Li, J.: A comparison study of three degree-of-freedom parallel robotic machine tools with/without actuation redundancy. Int. J. Comput. Integr. Manuf. 25(3), 230–247 (2012)

    Article  Google Scholar 

  27. Lee, S.H., Lee, J.H., Yi, B.-J., Kim, S.H., Kwak, Y.K.: Optimization and experimental verification for the antagonistic stiffness in redundantly actuated mechanisms: a five-bar example. Mechatronics 15(2), 213–238 (2005)

    Article  Google Scholar 

  28. Chakarov, D.: Study of the antagonistic stiffness of parallel mechanisms with actuation redundancy. Mech. Mach. Theory 39(6), 583–601 (2004)

    Article  MATH  Google Scholar 

  29. Zak, G., Fenton, R.G., Benhabib, B.: A simulation technique for the improvement of robot calibration. J. Mech. Des. 115(3), 674–679 (1993)

    Article  Google Scholar 

  30. Zak, G., Fenton, R.G., Benhabib, B.: Determination of the optimum cost-residual error trade-off in robot calibration. J. Mech. Des. 116(1), 28–35 (1994)

    Article  Google Scholar 

  31. Kaizerman, S., Zak, G., Benhabib, B., Fenton, R.G.: A sensitivity analysis based method for robot calibration. J. Mech. Des. 116(2), 607–613 (1994)

    Article  Google Scholar 

  32. Zak, G., Benhabib, B., Fenton, R.G., Saban, I.: Application of the weighted least squares parameter estimation method to the robot calibration. J. Mech. Des. 116(3), 890–893 (1994)

    Article  Google Scholar 

  33. il Jeong, J., Kang, D., Cho, Y.M., Kim, J.: Kinematic calibration for redundantly actuated parallel mechanisms. J. Mech. Des. 126(2), 307–318 (2004)

    Article  Google Scholar 

  34. Wu, J., Wang, J., Wang, L., Li, T.: Dynamics and control of a planar 3-DOF parallel mechanism with actuation redundancy. Mech. Mach. Theory 44(4), 835–849 (2009)

    Article  MATH  Google Scholar 

  35. Kim, J., Park, F.C., Ryu, S.J., Kim, J., Hwang, J.-C., Park, C., Iurascu, C.C.: Design and analysis of a redundantly actuated parallel mechanism for rapid machining. Robot. Autom. IEEE Trans. 17(4), 423–434 (2001)

    Article  Google Scholar 

  36. Bi, Z.M., Kang, B.: Enhancement of adaptability of parallel kinematic machines with an adjustable platform. J. Manuf. Sci. Eng. 132(6), 61016 (2010)

    Article  Google Scholar 

  37. Wang, J., Gosselin, C.M.: Kinematic analysis and design of kinematically redundant parallel mechanisms. J. Mech. Des. 126(1), 109–118 (2004)

    Article  Google Scholar 

  38. Cha, S.-H., Lasky, T.A., Velinsky, S.A.: Determination of the kinematically redundant active prismatic joint variable ranges of a planar parallel mechanism for singularity-free trajectories. Mech. Mach. Theory 44(5), 1032–1044 (2009)

    Article  MATH  Google Scholar 

  39. Wang, C., Fang, Y., Guo, S., Chen, Y.: Design and kinematical performance analysis of a 3-RUS/RRR redundantly actuated parallel mechanism for ankle rehabilitation. J. Mech. Robot. 5(4), 41003 (2013)

    Article  Google Scholar 

  40. Mehta, V.K., Dasgupta, B.: A general approach for optimal kinematic design of 6-DOF parallel mechanisms. Sadhana 36(6), 977–994 (2011)

    Article  Google Scholar 

  41. Shin, K., Yi, B.-J., Kim, W.: Parallel singularity-free design with actuation redundancy: a case study of three different types of 3-degree-of-freedom parallel mechanisms with redundant actuation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228(11), 2018–2035 (2014)

    Article  Google Scholar 

  42. Krut, S., Pierrot, F.: Velocity performance indices for parallel mechanisms with actuation redundancy. Robotica 22(02), 129–139 (2004)

    Article  Google Scholar 

  43. Ihn, Y.S., Ji, S.-H., Moon, H., Choi, H.R., Koo, J.C.: Kinematic design of a redundant parallel mechanism for maskless lithography optical instrument manipulations. Microsyst. Technol. 20 (8–9), 1479–1490 (2014)

    Article  Google Scholar 

  44. Rok, B., Byung-Ju, Y., Wheekuk, K., Sang-Rok, O., Jongil, P.: Design of a redundantly actuated leg mechanism. In: Proceedings of the IEEE International Conference on Robotics and Automation, 2003, ICRA’03, vol. 3, pp 4348–4353 (2003)

  45. He, G., Lu, Z.: The Research on the redundant actuated parallel robot with full compliant. In: 2006 IEEE Conference on Robotics, Automation and Mechatronics, pp 1–6 (2006)

  46. Shao, H., Wang, L., Guan, L., Wu, J.: Dynamic manipulability and optimization of a redundant three DOF planar parallel mechanism. In: 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, ReMAR, pp 302–308 (2009)

  47. Huang, X., Li, T., Xu, B., Wu, J.: Parameter design and manufacture for the 4RRR parallel mechanism. In: 2011 International Conference on Electronic and Mechanical Engineering and Information Technology EMEIT, vol. 5, pp 2540–2543 (2011)

  48. Huang, Z., Li, Q.C.: General methodology for type synthesis of symmetrical lower-mobility parallel mechanisms and several novel mechanisms. Int. J. Rob. Res. 21(2), 131–145 (2002)

    Article  Google Scholar 

  49. Huang, Z., Li, Q.: Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method. Int. J. Rob. Res. 22(1), 59–79 (2003)

    Google Scholar 

  50. Gogu, G.: Structural synthesis of parallel robots part 1: methodology. Springer Science & Business Media (2008)

  51. Gogu, G.: Structural Synthesis of Parallel Robots - Part 2: Translational Topologies. Springer Science & Business Media (2009)

  52. Gogu, G.: Structural Synthesis of Parallel Robots: Part 3: Topologies with Planar Motion of the Moving Platform. Springer Science & Business Media (2010)

  53. Gogu, G.: Structural Synthesis of Parallel Robots: Part 4: Other Topologies with Two and Three Degrees of Freedom. Springer Science & Business Media (2011)

  54. Gao, F., Zhang, Y., Li, W.: Type synthesis of 3-DOF reducible translational mechanisms. Robotica 23(02), 239–245 (2005)

    Article  Google Scholar 

  55. Yang, J., Gao, F., Ge, Q.J., Zhao, X., Guo, W., Jin, Z.: Type synthesis of parallel mechanisms having the first class GF sets and one-dimensional rotation. Robotica 29(06), 895–902 (2011)

    Article  Google Scholar 

  56. Gao, F., Yang, J., Ge, Q.J.: Type synthesis of parallel mechanisms having the second class GF sets and two dimensional rotations. J. Mech. Robot. 3(1), 11003 (2011)

    Article  Google Scholar 

  57. Gogu, G.: Fully-isotropic T2R3-type redundantly-actuated parallel robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp 3937–3942 (2007)

  58. Roberts, R.G., Yu, H.G., Maciejewski, A.: Fundamental limitations on designing optimally fault-tolerant redundant mechanisms. Robot. IEEE Trans. 24(5), 1224–1237 (2008)

    Article  Google Scholar 

  59. Gallardo-Alvarado, J., Alici, G., Pérez-González, L.: A new family of constrained redundant parallel mechanisms. Multibody Syst. Dyn. 23(1), 57–75 (2010)

    Article  MATH  Google Scholar 

  60. Azulay, H., Mills, J.K., Benhabib, B.: A Multi-tier design methodology for reconfigurable milling machines. J. Manuf. Sci. Eng. 136(4), 41007 (2014)

    Article  Google Scholar 

  61. Šika, Z., Hamrle, V., Valášek, M., Beneš, P.: Calibrability as additional design criterion of parallel kinematic machines. Mech. Mach. Theory 50, 48–63 (2012)

    Article  Google Scholar 

  62. Gosselin, C.M.: Kinematic and static analysis of a planar two-degree-of-freedom parallel mechanism. Mech. Mach. theory 31(2), 149–160 (1996)

    Article  Google Scholar 

  63. Yi, Y., McInroy, J.E., Jafari, F.: Generating classes of locally orthogonal Gough-Stewart platforms. Robot. IEEE Trans. 21(5), 812–820 (2005)

    Article  Google Scholar 

  64. Corbel, D., Pierrot, F.: From a 3-DOF parallel redundant ARCHI robot to an auto-calibrated ARCHI Robot. In: ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 847–854 (2007)

  65. Kotlarski, J., Abdellatif, H., Ortmaier, T., Heimann, B.: Enlarging the useable workspace of planar parallel robots using mechanisms of variable geometry. In: 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots ReMAR, pp 63–72 (2009)

  66. Gallant, A., Boudreau, R., Gallant, M.: Geometric determination of the dexterous workspace of n-RRRR and n-RRPR mechanisms. Mech. Mach. Theory 51, 159–171 (2012)

    Article  Google Scholar 

  67. Ryu, S.J., Kim, J., Park, F.C., Kim, J.: Design and performance analysis of a parallel mechanism-based universal machining center. In: Proceedings of 3rd International Conference on Advanced Mechatronics, pp 359–363 (1998)

  68. Lee, D., Kim, J., Seo, T.: Optimal design of 6-DOF eclipse mechanism based on task-oriented workspace. Robotica 30(07), 1041–1048 (2012)

    Article  Google Scholar 

  69. Ebrahimi, I., Carretero, J.A., Boudreau, R.: 3-PRRR Redundant planar parallel mechanism: inverse displacement, workspace and singularity analyses. Mech. Mach. Theory 42(8), 1007–1016 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  70. Gallant, A., Boudreau, R., Gallant, M.: Dexterous workspace of n-PRRR planar parallel mechanisms. J. Mech. Robot. 4(3), 31009 (2012)

    Article  Google Scholar 

  71. Ebrahimi, I., Carretero, J.A., Boudreau, R.: A family of kinematically redundant planar parallel mechanisms. J. Mech. Des. 130(6), 62306 (2008)

    Article  Google Scholar 

  72. Zarkandi, S., Vafadar, A.: PRRRRRP redundant planar parallel mechanism: kinematics, workspace and singularity analysis. In: 2011 IEEE Conference on Robotics, Automation and Mechatronics (RAM), pp 61–66 (2011)

  73. Kim, J.-W., Park, D.-H., Kim, H.-S., Han, S.-H.: Design of a novel 3-DOF parallel-type haptic device with redundant actuation. In: 2007 International Conference on Control, Automation and Systems ICCAS, pp 2270–2273 (2007)

  74. Kim, H.S.: Kinematically redundant parallel haptic device with large workspace. Int J Adv Robot. Sy 9(260) (2012)

  75. Arata, J., Kondo, H., Ikedo, N., Fujimoto, H.: Haptic device using a newly developed redundant parallel mechanism. Robot. IEEE Trans. 27(2), 201–214 (2011)

    Article  Google Scholar 

  76. Hess-Coelho, T.A.: A redundant parallel spherical mechanism for robotic wrist applications. J. Mech. Des. 129(8), 891–895 (2007)

    Article  Google Scholar 

  77. Bai, S., Teo, M.Y., Ng, W.S., Sim, C.: Workspace analysis of a parallel mechanism with one redundant DOF for skull-base surgery. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp 1694–1699 (2001)

  78. Alagheband, A., Mahmoodi, M., Mills, J.K., Benhabib, B.: Comparative analysis of a redundant pentapod parallel kinematic machine. J. Mech. Robot. 7(3), 34502 (2015)

    Article  Google Scholar 

  79. Zlatanov, D., Fenton, R.G., Benhabib, B.: A unifying framework for classification and interpretation of mechanism singularities. J. Mech. Des. 117(4), 566–572 (1995)

    Article  Google Scholar 

  80. Zlatanov, D., Fenton, R.G., Benhabib, B.: Identification and classification of the singular configurations of mechanisms. Mech. Mach. Theory 33(6), 743–760 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  81. Heerah, I., Benhabib, B., Kang, B., Mills, J.K.: Architecture selection and singularity analysis of a three-degree-of-freedom planar parallel mechanism. J. Intell. Robot. Syst. 37(4), 355–374 (2003)

    Article  Google Scholar 

  82. Tsai, L.-W.: Robot analysis: the mechanics of serial and parallel mechanisms. Wiley (1999)

  83. Liu, G., Lou, Y., Li, Z.: Singularities of parallel mechanisms: a geometric treatment. Robot. Autom. IEEE Trans. 19(4), 579–594 (2003)

    Article  Google Scholar 

  84. Liu, G.F., Wu, Y.L., Wu, X.Z., Kuen, Y.Y., Li, Z.X.: Analysis and control of redundant parallel mechanisms. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation ICRA, vol. 4, pp 3748–3754 (2001)

  85. Dasgupta, B., Mruthyunjaya, T.S.: Force redundancy in parallel mechanisms: theoretical and practical issues. Mech. Mach. Theory 33(6), 727–742 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  86. Wu, J., Wang, J., Li, T., Wang, L.: Performance analysis and application of a redundantly actuated parallel mechanism for milling. J. Intell. Robot. Syst. 50(2), 163–180 (2007)

    Article  Google Scholar 

  87. Leguay-Durand, S., Reboulet, C.: Optimal design of a redundant spherical parallel mechanism. Robotica 15(04), 399–405 (1997)

    Article  Google Scholar 

  88. Saglia, J., Dai, J., Caldwell, D.: Geometry and kinematic analysis of a redundantly actuated parallel mechanism that eliminates singularities and improves dexterity. J. Mech. Des. 130(12) (2008)

  89. Saglia, J.A., Tsagarakis, N.G., Dai, J. S., Caldwell, D.G.: A high performance redundantly actuated parallel mechanism for ankle rehabilitation. Int. J. Rob. Res. (2009)

  90. O’Brien, J.F., Wen, J.T.: Redundant actuation for improving kinematic manipulability. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, vol. 2, pp 1520–1525 (1999)

  91. Notash, L., Podhorodeski, R.P.: Forward displacement analysis and uncertainty configurations of parallel mechanisms with a redundant branch. J. Robot. Syst. 13(9), 587–601 (1996)

    Article  MATH  Google Scholar 

  92. Kim, H.W., Suh, I.H., Yi, B.-J.: Haptic rendering of a puncture task with 4-legged 6 DOF parallel haptic device. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, vol. 3, pp 2892–2898 (2004)

  93. Firmani, F., Podhorodeski, R.P.: Force-unconstrained poses for a redundantly-actuated planar parallel mechanism. Mech. Mach. Theory 39(5), 459–476 (2004)

    Article  MATH  Google Scholar 

  94. Saafi, H., Laribi, M.A., Zeghloul, S.: Redundantly actuated 3-RRR spherical parallel mechanism used as a haptic device: improving dexterity and eliminating singularity. Robotica 33(05), 1113–1130 (2015)

    Article  Google Scholar 

  95. Gosselin, C., Laliberte, T., Veillette, A.: Singularity-free kinematically redundant planar parallel mechanisms with unlimited rotational capability. Robot. IEEE Trans. 31(2), 457–467 (2015)

    Article  Google Scholar 

  96. Zhang, D.: Parallel robotic machine tools. Springer Science & Business Media (2009)

  97. Sadjadian, H., Taghirad, H.D.: Kinematic, singularity and stiffness analysis of the hydraulic shoulder: a 3-dof redundant parallel mechanism. Adv. Robot. 20(7), 763–781 (2006)

    Article  Google Scholar 

  98. Zhao, Y., Gao, F., Li, W., Liu, W., Zhao, X.: Development of 6-dof parallel seismic simulator with novel redundant actuation. Mechatronics 19(3), 422–427 (2009)

    Article  Google Scholar 

  99. Wang, L., Wu, J., Wang, J.: Dynamic formulation of a planar 3-DOF parallel mechanism with actuation redundancy. Robot. Comput. Integr. Manuf. 26(1), 67–73 (2010)

    Article  MathSciNet  Google Scholar 

  100. Pashkevich, A., Chablat, D., Wenger, P.: Stiffness analysis of overconstrained parallel mechanisms. Mech. Mach. Theory 44(5), 966–982 (2009)

    Article  MATH  Google Scholar 

  101. Wu, J., Wang, J.S., Wang, L.P., Li, T.M.: Dexterity and stiffness analysis of a three-degree-of-freedom planar parallel mechanism with actuation redundancy. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 221(8), 961–969 (2007)

    Article  Google Scholar 

  102. Nokleby, S.B., Firmani, F., Zibil, A., Podhorodeski, R.P.: An analysis of the force-moment capabilities of branch-redundant planar-parallel Mechanisms. In: ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 1013–1020 (2007)

  103. Zhang, D., Shi, Q., Li, J.: A comparison study of three degree-of-freedom micro-motion parallel kinematic machines with/without actuation redundancy. In: International Conference on Manufacturing Automation ICMA, pp 239–245 (2010)

  104. Wang, D., Fan, R., Chen, W.: Performance enhancement of a three-degree-of-freedom parallel tool head via actuation redundancy. Mech. Mach. Theory 71, 142–162 (2014)

    Article  Google Scholar 

  105. Wen, H., Xu, W., Cong, M.: Kinematic model and analysis of an actuation redundant parallel robot with higher kinematic pairs for jaw movement. Ind. Electron. IEEE Trans. 62(3), 1590–1598 (2015)

    Article  Google Scholar 

  106. Zhao, Y., Gao, F.: Dynamic performance comparison of the 8PSS redundant parallel mechanism and its non-redundant counterpart—the 6PSS parallel mechanism. Mech. Mach. Theory 44(5), 991–1008 (2009)

    Article  MATH  Google Scholar 

  107. Zhao, Y., Gao, F., Dong, X., Zhao, X.: Dynamics analysis and characteristics of the 8-PSS flexible redundant parallel mechanism. Robot. Comput. Integr. Manuf. 27(5), 918–928 (2011)

    Article  Google Scholar 

  108. Abedinnasab, M.H., Vossoughi, G.R.: Analysis of a 6-DOF redundantly actuated 4-legged parallel mechanism. Nonlinear Dyn. 58(4), 611–622 (2009)

    Article  MATH  Google Scholar 

  109. Wu, X., Kobayashi, T., Nakamura, A., Yasui, K., Furuhashi, H.: Development of the upper body of a humanoid robot using parallel linkage mechanisms. In: 2014 International Conference on Industrial Automation, Information and Communications Technology IAICT, pp 9–14 (2014)

  110. Nokleby, S.B., Fisher, R., Podhorodeski, R.P., Firmani, F.: Force capabilities of redundantly-actuated parallel mechanisms. Mech. Mach. theory 40(5), 578–599 (2005)

    Article  MATH  Google Scholar 

  111. Jin, S., Kim, J., Seo, T.: Optimization of a redundantly actuated 5R symmetrical parallel mechanism based on structural stiffness. Robotica, 1–11

  112. So, B.R., Yi, B.-J.: Design of a redundantly actuated hip mechanism. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 49(1), 253–259 (2006)

    Article  Google Scholar 

  113. Wang, C., Fang, Y., Guo, S., Zhou, C.: Design and kinematic analysis of redundantly actuated parallel mechanisms for ankle rehabilitation. Robotica 33(02), 366–384 (2015)

    Article  Google Scholar 

  114. Cheng, L., Zhang, X.G., Zhao, Y.S.: Redundant actuation investigation of a 5-DOF parallel robot. In: Applied Mechanics and Materials, vol. 526, pp 164–170 (2014)

  115. Fontes, J.V.C., Santos, J.C., Da Silva, M.M.: Optimization strategies for actuators of kinematically redundant mechanisms to achieve high dynamic performance. In: 2014 SBR-LARS Robotics Symposium and Robocontrol Joint Conference on Robotics, pp 31–36 (2014)

  116. Bai, Y., Gao, F., Guo, W.: Design of mechanical presses driven by multi-servomotor. J. Mech. Sci. Technol. 25(9), 2323–2334 (2011)

    Article  Google Scholar 

  117. Kotlarski, J., Do Thanh, T., Heimann, B., Ortmaier, T.: Optimization strategies for additional actuators of kinematically redundant parallel kinematic machines. In: 2010 IEEE International Conference on Robotics and Automation ICRA, pp 656–661 (2010)

  118. Cha, S.-H., Lasky, T.A., Velinsky, S.A.: Kinematically-redundant variations of the 3-R RR mechanism and local optimization-based singularity avoidance. Mech. Based Des. Struct. Mach. 35(1), 15–38 (2007)

    Article  Google Scholar 

  119. Kotlarski, J., Heimann, B., Ortmaier, T.: Experimental validation of the influence of kinematic redundancy on the pose accuracy of parallel kinematic machines. In: 2011 IEEE International Conference on Robotics and Automation ICRA, pp 1923–1929 (2011)

  120. Carretero, J.A., Ebrahimi, I., Boudreau, R.: Overall motion planning for kinematically redundant parallel mechanisms. J. Mech. Robot. 4(2), 24502 (2012)

    Article  Google Scholar 

  121. Oen, K.-T., Wang, L.-C.T.: Optimal dynamic trajectory planning for linearly actuated platform type parallel mechanisms having task space redundant degree of freedom. Mech. Mach. theory 42(6), 727–750 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  122. Jiang, Y., Li, T., Wang, L.: Dynamic modeling and redundant force optimization of a 2-DOF parallel kinematic machine with kinematic redundancy. Robot. Comput. Integr. Manuf. 32, 1–10 (2015)

    Article  Google Scholar 

  123. collab=G. He and Z. Lu, “Optimum motion planning of parallel redundant mechanisms with shaking force reduction,” in Multiconference on Computational Engineering in Systems Applications IMACS, 1132–1139 (2006)

  124. Chen, G., Wang, H., Zhao, Y., Lin, Z.: A kind of kinematically redundant planar parallel mechanism for optimal output accuracy. In: ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 475–483 (2009)

  125. Smirnov, V., Plyusnin, V., Mirzaeva, G.: Energy efficient trajectories of industrial machine tools with parallel kinematics. In: 2013 IEEE International Conference on Industrial Technology ICIT, pp 1267–1272 (2013)

  126. Ozgoren, M.K.: Optimal inverse kinematic solutions for redundant mechanisms by using analytical methods to minimize position and velocity measures. J. Mech. Robot. 5(3), 31009 (2013)

    Article  Google Scholar 

  127. Li, Z.Y., Choi, J.Y., Ihn, Y.S., Ji, S.-H., Koo, J.C.: Parallel micro mechanism for optical spot array alignment of maskless lithography. Microsyst. Technol., 1–6 (2015)

  128. Niemann, S., Kotlarski, J., Ortmaier, T., Muller-Schloer, C.: Reducing the optimization problem for the efficient motion planning of kinematically redundant parallel robots. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics AIM, pp 618–624 (2013)

  129. Belda, K., Böhm, J., Valášek, M.: State-space generalized predictive control for redundant parallel robots. Mechanics Based Design of Structures and Machines: An International Journal 31(3) (2003)

  130. ValÁšek, M., Bauma, Vá, Belda, K., PÍša, P.: Design-by-optimization and control of redundantly actuated parallel kinematics sliding star. Multibody Syst. Dyn. 14(3–4), 251–267 (2005)

    Article  MATH  Google Scholar 

  131. Cheng, L., Wang, H., Zhao, Y.: Analysis and experimental investigation of parallel machine tool with redundant actuation. In: Intelligent Robotics and Applications, pp 179–188. Springer (2008)

  132. Boudreau, R., Mao, X., Podhorodeski, R.: Backlash elimination in parallel mechanisms using actuation redundancy. Robotica 30(03), 379–388 (2012)

    Article  Google Scholar 

  133. Muller, A.: Internal preload control of redundantly actuated parallel mechanisms-its application to backlash avoiding control. IEEE Trans. Robot. 21(4), 668–677 (2005)

    Article  Google Scholar 

  134. Yi, B., Freeman, R.A.: Geometric analysis of antagonistic stiffness in redundantly actuated parallel mechanisms. J. Robot. Syst. 10(5), 581–603 (1993)

    Article  MATH  Google Scholar 

  135. Simaan, N., Shoham, M.: Geometric interpretation of the derivatives of parallel robots’ jacobian matrix with application to stiffness control. J. Mech. Des. 125(1), 33–42 (2003)

    Article  Google Scholar 

  136. Kock, S., Schumacher, W.: Control of a fast parallel robot with a redundant chain and gearboxes: experimental results. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation ICRA, vol. 2, pp 1924–1929 (2000)

  137. Kock, S., Schumacher, W.: A mixed elastic and rigid-body dynamic model of an actuation redundant parallel robot with high-reduction gears. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation ICRA, vol. 2, pp 1918–1923 (2000)

  138. Liu, G.F., Wu, X.Z., Li, Z.X.: Inertia equivalence principle and adaptive control of redundant parallel mechanisms. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation ICRA, vol. 1, pp 835–840 (2002)

  139. Garrido, R., Torres-Cruz, D.: On PD control of parallel robots with redundant actuation. In: 2004 1st International Conference on Electrical and Electronics Engineering ICEEE, pp 356–360 (2004)

  140. Zhang, Y.-X., Cong, S., Shang, W.-W., Li, Z.-X., Jiang, S.-L.: Modeling, identification and control of a redundant planar 2-DOF parallel mechanism. Int. J. Control Autom. Syst. 5(5), 559–569 (2007)

    Google Scholar 

  141. Muller, A.: Consequences of geometric imperfections for the control of redundantly actuated parallel mechanisms. Robot. IEEE Trans. 26(1), 21–31 (2010)

    Article  Google Scholar 

  142. Müller, A.: Problems in the control of redundantly actuated parallel mechanisms caused by geometric imperfections. Meccanica 46(1), 41–49 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  143. Müller, A., Hufnagel, T.: Model-based control of redundantly actuated parallel mechanisms in redundant coordinates. Rob. Auton. Syst. 60(4), 563–571 (2012)

    Article  Google Scholar 

  144. Hufnagel, T., Muller, A.: A projection method for the elimination of contradicting decentralized control forces in redundantly actuated PKM. Robot. IEEE Trans. 28(3), 723–728 (2012)

    Article  Google Scholar 

  145. Tang, H.T., Yao, J.T., Cheng, L., Zhao, Y.S: Hybrid force/position control investigation of parallel machine tool with redundant actuation. In: Applied Mechanics and Materials, vol. 121, pp 2040–2044 (2012)

  146. Shang, W.W., Cong, S., Li, Z.X., Jiang, S.L.: Augmented nonlinear PD controller for a redundantly actuated parallel mechanism. Adv. Robot. 23(12–13), 1725–1742 (2009)

    Article  Google Scholar 

  147. Shang, W., Cong, S.: Nonlinear adaptive task space control for a 2-DOF redundantly actuated parallel mechanism. Nonlinear Dyn. 59(1–2), 61–72 (2010)

    Article  MATH  Google Scholar 

  148. Shang, W. -W., Cong, S., Ge, Y.: Adaptive computed torque control for a parallel mechanism with redundant actuation. Robotica 30(03), 457–466 (2012)

    Article  Google Scholar 

  149. Shang, W., Cong, S.: Robust nonlinear control of a planar 2-DOF parallel mechanism with redundant actuation. Robot. Comput. Integr. Manuf. 30(6), 597–604 (2014)

    Article  Google Scholar 

  150. Shang, W., Cong, S., Ge, Y.: Coordination motion control in the task space for parallel mechanisms with actuation redundancy. Autom. Sci. Eng. IEEE Trans. 10(3), 665–673 (2013)

    Article  Google Scholar 

  151. Mi, J.W., Bao, H., Du, J.L.: Synchronization control of planar 2-dof robot with redundant actuation. Advanced Materials Research 468, 1414–1420 (2012)

    Article  Google Scholar 

  152. Li, Y., Wang, Y.: Sliding mode variable structure control of a redundantly actuated parallel robot. Mater. Sci. Forum 626, 465–470 (2009)

    Article  Google Scholar 

  153. Niu, X.-M., Gao, G.-Q., Liu, X.-J., Bao, Z.-D.: Dynamics and control of a novel 3-DOF parallel mechanism with actuation redundancy. Int. J. Autom. Comput. 10(6), 552–562 (2013)

    Article  Google Scholar 

  154. Natal, G.S., Chemori, A., Pierrot, F.: Dual-space adaptive control of redundantly actuated parallel mechanisms for extremely fast operations with load changes. In: 2012 of the IEEE International Conference on Robotics and Automation ICRA, pp 253–258 (2012)

  155. Zhou, N., Hao, K., Guo, C., Dou, Y.: Visual servo control system of 2-DOF parallel robot. In: Software Engineering and Knowledge Engineering: Theory and Practice, pp 425–433. Springer (2012)

  156. Trujano, M.A., Garrido, R., Soria, A.: Robust visual control of parallel robots under uncertain camera orientation. Int. J. Adv. Robot. Syst. 9 (2012)

  157. Pomares, J., Perea, I., Torres, F.: Dynamic visual servoing with chaos control for redundant robots. Mechatronics, IEEE/ASME Trans. 19(2), 423–431 (2014)

    Article  Google Scholar 

  158. Rauf, A., Ryu, J.: Fully autonomous calibration of parallel mechanisms by imposing position constraint. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation ICRA, vol. 3, pp 2389–2394 (2001)

  159. Nahvi, A., Hollerbach, J.M., Hayward, V., ITniversit, M.: Calibration of a parallel robot using multiple kinematic closed loops. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation ICRA, vol. 1, pp 407–412 (1994)

  160. Ecorchard, G., Neugebauer, R., Maurine, P.: Elasto-geometrical modeling and calibration of redundantly actuated PKMs. Mech. Mach. theory 45(5), 795–810 (2010)

    Article  MATH  Google Scholar 

  161. Feng, C., Cong, S., Shang, W.: Integrated kinematic calibration for all the parameters of a planar 2DOF redundantly actuated parallel mechanism. J. Mech. Robot. 1(3), 31003 (2009)

    Article  Google Scholar 

  162. Liu, W., Gao, F., Qi, K., Zhang, J.: Accuracy of a novel parallel robot with orthogonal chains. In: Intelligent Robotics and Applications, pp 1212–1222. Springer (2008)

  163. Müller, A., Ruggiu, M.: Self-calibration of redundantly actuated PKM exploiting kinematic landmarks. In: Computational Kinematics, pp 93–102. Springer (2014)

  164. Do Thanh, T., Kotlarski, J., Heimann, B., Ortmaier, T.: Dynamics identification of kinematically redundant parallel robots using the direct search method. Mech. Mach. theory 52, 277–295 (2012)

    Article  Google Scholar 

  165. Briot, S., Gautier, M., Krut, S.: Dynamic parameter identification of actuation redundant parallel robots: application to the DualV. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics AIM, pp 637–643 (2013)

  166. Monteverde, V., Tosunoglu, S.: Effect of kinematic structure and dual actuation on fault tolerance of robot mechanisms. In: Proceedings of the 1997 IEEE International Conference on Robotics and Automation, vol. 4, pp 2902–2907 (1997)

  167. Yi, Y., McInroy, J.E., Chen, Y.: Over-constrained rigid multibody systems: differential kinematics and fault tolerance. In: SPIE’s 9th Annual International Symposium on Smart Structures and Materials, pp 189–199 (2002)

  168. Yan, C., Lu, Z.: Research on features of faulting redundant actuation mechanism. In: 6th International Symposium on Instrumentation and Control Technology: Signal Analysis, Measurement Theory, Photo-Electronic technology, and Artificial Intelligence, pp 635758 1–6 (2006)

  169. Qu, H., Fang, Y., Guo, S., Ye, W.: A novel 4-UPU translational parallel mechanism with fault-tolerant configurations. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228(16), 3006–3018 (2014)

    Article  Google Scholar 

  170. Benhabib, B., Dai, M.Q.: Mechanical design of a modular robot for industrial applications. J. Manuf. Syst. 10(4), 297–306 (1991)

    Article  Google Scholar 

  171. Benhabib, B., Zak, G., Lipton, M.G.: A generalized kinematic modeling method for modular robots. J. Robot. Syst. 6(5), 545–571 (1989)

    Article  MATH  Google Scholar 

  172. Yang, G., Chen, I.-M., Lim, W.K., Yeo, S.H.: Kinematic design of modular reconfigurable in-parallel robots. Auton. Robots 10(1), 83–89 (2001)

    Article  MATH  Google Scholar 

  173. Fisher, R., Podhorodeski, R.P., Nokleby, S.B.: Design of a reconfigurable planar parallel mechanism. J. Robot. Syst. 21(12), 665–675 (2004)

    Article  MATH  Google Scholar 

  174. Tosi, D., Legnani, G., Pedrocchi, N., Righettini, P., Giberti, H.: Cheope: a new reconfigurable redundant mechanism. Mech. Mach. Theory 45(4), 611–626 (2010)

    Article  MATH  Google Scholar 

  175. Vertuan, A., Legnani, G., Adamini, R., Tosi, D., Pedrocchi, N.: Performance analysis of a reconfigurable redundant parallel mechanism. In: 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots ReMAR, pp 647–655 (2009)

  176. Lee, W.H., Sanderson, A.C.: Dynamic analysis and distributed control of the tetrobot modular reconfigurable robotic system. Auton. Robots 10(1), 67–82 (2001)

    Article  MATH  Google Scholar 

  177. Hamlin, G.J., Sanderson, A.C.: Tetrobot: A modular approach to reconfigurable parallel robotics, vol. 423. Springer Science & Business Media (2013)

  178. Moosavian, A., Xi, F.J.: Design and analysis of reconfigurable parallel robots with enhanced stiffness. Mech. Mach. Theory 77, 92–110 (2014)

    Article  Google Scholar 

  179. Palpacelli, M., Carbonari, L., Palmieri, G.: Details on the design of a lockable spherical joint for robotic applications. J. Intell. Robot. Syst 81(2), 169–179 (2015)

    Article  Google Scholar 

  180. Palpacelli, M., Carbonari, L., Palmieri, G., Callegari, M.: Analysis and Design of a Reconfigurable 3-DoF Parallel Manipulator for Multimodal Tasks. Mechatronics, IEEE/ASME Trans. 20 (4), 1–11 (2014)

    Google Scholar 

  181. Azulay, H., Mahmoodi, M., Zhao, R., Mills, J.K., Benhabib, B.: Comparative analysis of a new 3PPRS parallel kinematic mechanism. Robot. Comput. Integr. Manuf. 30(4), 369–378 (2014)

    Article  Google Scholar 

  182. Maeda, K., Tadokoro, S., Takamori, T., Hiller, M., Verhoeven, R.: On design of a redundant wire-driven parallel robot WARP mechanism. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, vol. 2, pp 895–900 (1999)

  183. Kawamura, S., Kino, H., Won, C.: High-speed manipulation by using parallel wire-driven robots. Robotica 18(01), 13–21 (2000)

    Article  Google Scholar 

  184. Tadokoro, S., Murao, Y., Hiller, M., Murata, R., Kohkawa, H., Matsushima, T.: A motion base with 6-DOF by parallel cable drive architecture. Mechatronics, IEEE/ASME Trans. 7(2), 115–123 (2002)

    Article  Google Scholar 

  185. Oh, S.-R., Agrawal, S.K.: Cable suspended planar robots with redundant cables: controllers with positive tensions. Robot. IEEE Trans. 21(3), 457–465 (2005)

    Article  Google Scholar 

  186. Ming, A., Higuchi, T.: Study on multiple degree-of-freedom positioning mechanism using wires. i: concept, design and control. Int. J. Japan Soc. Precis. Eng. 28(2), 131–138 (1994)

    Google Scholar 

  187. Roberts, R.G., Graham, T., Lippitt, T.: On the inverse kinematics, statics, and fault tolerance of cable-suspended robots. J. Robot. Syst. 15(10), 581–597 (1998)

    Article  MATH  Google Scholar 

  188. Williams, R.L., Gallina, P.: Planar cable-direct-driven robots, part i: Kinematics and statics. In: Proceedings of the 2001 ASME Design Technical Conference 27th Design Automation Conference (2001)

  189. Gallina, P., Rossi, A., Williams, R.L. II: Planar cable-direct-driven robots, part ii: dynamics and control. In: Proceedings of the ASME IDETC/CIE Mechanics and Robotics Conference (2001)

  190. Notash, L., Kamalzadeh, A.: Inverse dynamics of wire-actuated parallel mechanisms with a constraining linkage. Mech. Mach. Theory 42(9), 1103–1118 (2007)

    Article  MATH  Google Scholar 

  191. Krut, S., Company, O., Pierrot, F.: Force performance indexes for parallel mechanisms with actuation redundancy, especially for parallel wire-driven mechanisms. In: Proceedings 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, vol. 4, pp 3936–3941 (2004)

  192. Chen, W., Chen, Q., Zhang, J., Yu, S.: Kinematics control for a 7-dof cable-driven anthropomorphic arm. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 1650–1655 (2006)

  193. Hassan, M., Khajepour, A.: Optimization of actuator forces in cable-based parallel mechanisms using convex analysis. Robot. IEEE Trans. 24(3), 736–740 (2008)

    Article  Google Scholar 

  194. Mikelsons, L., Bruckmann, T., Hiller, M., Schramm, D.: A real-time capable force calculation algorithm for redundant tendon-based parallel mechanisms. In: IEEE International Conference on Robotics and Automation, 2008, ICRA 2008, pp 3869–3874 (2008)

  195. Pott, A.: An improved force distribution algorithm for over-constrained cable-driven parallel robots. In: Computational Kinematics, pp 139–146. Springer (2014)

  196. Bedoustani, Y.B., Taghirad, H.D., Aref, M.M.: Dynamics analysis of a redundant parallel mechanism driven by elastic cables. In: 2008 10th International Conference on Control, Automation, Robotics and Vision ICARCV, pp 536–542 (2008)

  197. Khosravi, M.A., Taghirad, H.D.: Dynamic analysis and control of cable driven robots with elastic cables. Trans. Can. Soc. Mech. Eng. 35(4), 543–558 (2011)

    Google Scholar 

  198. Ferraresi, C., Paoloni, M., Pescarmona, F.: A new methodology for the determination of the workspace of six-DOF redundant parallel structures actuated by nine wires. Robotica 25(01), 113–120 (2007)

    Article  Google Scholar 

  199. Merlet, J.-P.: Kinematics of the wire-driven parallel robot MARIONET using linear actuators. In: 2008 of the IEEE International Conference on Robotics and Automation ICRA, pp 3857–3862 (2008)

  200. Aref, M.M., Gholami, P., Taghirad, H.D.: Dynamic and sensitivity analysis of KNTU CDRPM: a cable driven redundant parallel mechanism. In: 2008 of the IEEE/ASME International Conference on Mechtronic and Embedded Systems and Applications MESA, pp 528–533 (2008)

  201. Gholami, P., Aref, M.M., Taghirad, H.D.: On the control of the KNTU CDRPM: A cable driven redundant parallel mechanism. In: 2008 of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, pp 2404–2409 (2008)

  202. Gallardo, J., Lesso, R., Rico, J.M., Alici, G.: The kinematics of modular spatial hyper-redundant mechanisms formed from RPS-type limbs. Rob. Auton. Syst. 59(1), 12–21 (2011)

    Article  Google Scholar 

  203. Hu, B., Wang, Y., Yu, J., Lu, Y.: Solving kinematics and stiffness of a novel n (2-UPS/PS + RPS) spatial hyper-redundant mechanism. Robotica, 1–14

  204. Chirikjian, G.S., Burdick, J.W.: Kinematically optimal hyper-redundant mechanism configurations. IEEE Trans. Robot. Autom. 11(6), 794–806 (1995)

    Article  Google Scholar 

  205. Motahari, A., Zohoor, H., Korayem, M.H.: A new motion planning method for discretely actuated hyper-redundant mechanisms. Robotica, 1–18

  206. Hafez, M., Lichter, M.D., Dubowsky, S.: Optimized binary modular reconfigurable robotic devices. IEEE/ASME Trans. Mechatronics 8(1), 18–25 (2003)

    Article  Google Scholar 

  207. Chirikjian, G.S., Burdick, J.W.: A modal approach to hyper-redundant mechanism kinematics. IEEE Trans. Robot. Autom. 10(3), 343–354 (1994)

    Article  Google Scholar 

  208. Gallardo-Alvarado, J., Aguilar-Nájera, C.R., Casique-Rosas, L., Pérez-González, L., Rico-artínez, J.M.: Solving the kinematics and dynamics of a modular spatial hyper-redundant mechanism by means of screw theory. Multibody Syst. Dyn. 20(4), 307–325 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  209. Ibrahim, O., Khalil, W.: Inverse and direct dynamic models of hybrid robots. Mech. Mach. theory 45(4), 627–640 (2010)

    Article  MATH  Google Scholar 

  210. Young Kim, Y., Jang, G.-W., Nam, S.J.: Inverse kinematics of binary mechanisms by using the continuous-variable-based optimization method. IEEE Trans. Robot. 22(1), 33–42 (2006)

    Article  Google Scholar 

  211. Motahari, A., Zohoor, H., Korayem, M.H.: A new inverse kinematic algorithm for discretely actuated hyper-redundant mechanisms. Lat. Am. Appl. Res. J 43, 161–168 (2013)

    Google Scholar 

  212. Taherifar, A., Alasty, A., Salarieh, H., Boroushaki, M.: Path planning for a hyper-redundant mechanism with lockable joints using PSO. In: 2013 First RSI/ISM International Conference on Robotics and Mechatronics ICRoM, pp 224–229 (2013)

  213. Tanaka, M.: Large-scale framed structure as parallel mechanism with hyper-redundancy. Adv. Robot. 8(6), 573–587 (1993)

    Article  Google Scholar 

  214. Mintenbeck, J., Estana, R.: Design, modelling and control of a hyper-redundant 3-RPS parallel mechanism. In: 2010 IEEE International Conference on Robotics and Biomimetics ROBIO, pp 591–596 (2010)

  215. Gallardo-Alvarado, J., Lesso-Arroyo, R., García-MIranda, J.S.: A worm-inspired new spatial hyper-redundant mechanism. Robotica 29(04), 571–579 (2010)

    Article  Google Scholar 

  216. Chibani, A., Mahfoudi, C., Chettibi, T., Merzouki, R.: Conceptual study of a class of hybrid hyper-redundant robot. In: 2012 of the IEEE International Conference on Robotics and Biomimetics (ROBIO), pp 2000–2005 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beno Benhabib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luces, M., Mills, J.K. & Benhabib, B. A Review of Redundant Parallel Kinematic Mechanisms. J Intell Robot Syst 86, 175–198 (2017). https://doi.org/10.1007/s10846-016-0430-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0430-4

Keywords

Navigation