Skip to main content
Log in

A Novel Vehicle-Based GNSS Integrity Augmentation System for Autonomous Airport Surface Operations

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Autonomous vehicles equipped with integrity augmentation systems offer the potential to increase safety, efficiency and sustainability of airport ground operations. The model predictive behavior of these systems supports a timely detection of any deviations from the Required Navigation Performance (RNP), producing useful alerts for onboard mission management. Firstly, the system architecture of a Navigation and Guidance System (NGS) for autonomous airport surface vehicle operations based on Global Navigation Satellite System (GNSS) measurements is described. Subsequently, an integrity augmentation module is implemented in the NGS by modeling the key GNSS signal degradation phenomena including masking, multipath and signal attenuation. The GNSS integrity augmentation system is capable of monitoring the RNP and alerting the remote operator of the airport surface vehicle. The uniqueness of the presented system is that both caution and warning flags are produced based on prediction-avoidance and reaction-correction capabilities respectively. Additionally, the system is capable of issuing suitable steering commands to the onboard mission management system/remote ground base station operator in the event of GNSS signal degradations or losses. Multipath is modelled in detail using a ray tracing algorithm and the vehicle position error is computed as a function of relative geometry between the satellites, receiver antenna and reflectors in realistic airport operation scenarios. Additionally, the surface vehicle dynamics and reflective surfaces of buildings are modelled in order to simulate a vehicle trajectory through a typical airport airside/aprons environment. Simulation case studies are performed to validate the mathematical models developed for the integrity augmentation system and the results corroborate the suitability of the proposed system to generate useful and timely integrity flags when GNSS is used as the primary means of navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lacagnina, M.: Defusing the ramp. AeroSafety World 2(5) (2007)

  2. McDonald, S. S.: Personal rapid transit (PRT) system and its development personal rapid transit (PRT) system development. In: Transportation Technologies for Sustainability, pp. 831–850. Springer (2013)

  3. Spriggs, T.J.: Autonomous vehicle guidance on or near airports. In: Google Patent (2005)

  4. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G.: Stanley: the robot that won the DARPA grand challenge. J. Field Rob. 23(9), 661–692 (2006)

    Article  Google Scholar 

  5. O’Connor, M. L.: Carrier-Phase Differential GPS for Automatic Control of Land Vehicles. Stanford University (1997)

  6. Bevly, D. M., Rekow, A., Parkinson, B.: Comparison of INS vs. carrier-phase DGPS for attitude determination in the control of off-road vehicles. Navigation 47(4), 257–266 (2000)

    Article  Google Scholar 

  7. Andrés, S., Daniel, C.: Integrity monitoring applied to the reception of GNSS signals in urban environments. PhD Thesis, Laboratoire des Télécommunications Spatiales et Aéronautiques - TéSA, Institut National Polytechnique de Toulouse (INP Toulouse) (2012)

  8. Sabatini, R., Moore, T., Hill, C.: A new avionics-based GNSS integrity augmentation system: part 1–fundamentals. J. Navig. 66(03), 363–384 (2013)

    Article  Google Scholar 

  9. Sabatini, R., Moore, T., Hill, C.: Avionics-based integrity augmentation system for mission-and safety-critical GNSS applications. In: Proceedings of 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, TN, pp. 743–763 (2012)

  10. Sabatini, R., Moore, T., Hill, C., Ramasamy, S.: Assessing avionics-based GNSS integrity augmentation performance in UAS mission-and safety-critical tasks. In: International Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp. 650–659. IEEE (2015)

  11. Liso Nicolas, M., Jacob, M., Smyrnaios, M., Schon, S., Kurner, T.: Basic concepts for the modeling and correction of GNSS multipath effects using ray tracing and software receivers. In: IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 2011, pp. 890–893. IEEE (2011)

  12. Iskander, M. F., Yun, Z.: Propagation prediction models for wireless communication systems. IEEE Trans. Microwave Theory Tech. 50(3), 662–673 (2002)

    Article  Google Scholar 

  13. Pirjanian, P.: An Overview of System Architecture for Action Selection in Mobile Robotics. Laboratory of Image Analysis, Aalborg University, Aalborg, Denmark (1997)

    Google Scholar 

  14. Gat, E.: On three-layer architectures. Artificial Intelligence and Mobile Robots 195, 210 (1998)

    Google Scholar 

  15. Rezaei, S., Sengupta, R.: Kalman filter-based integration of DGPS and vehicle sensors for localization. IEEE Trans. Control Syst. Technol. 15(6), 1080–1088 (2007)

    Article  Google Scholar 

  16. Sabatini, R., Rodriguez, L., Kaharkar, A., Bartel, C., Shaid, T.: Carrier-phase GNSS attitude determination and control system for unmanned aerial vehicle applications. ARPN J. Syst. Softw. 2(11), 297–322 (2012)

    Google Scholar 

  17. Sabatini, R., Bartel, C., Kaharkar, A., Shaid, T., Rodriguez, L., Zammit-Mangion, D., Jia, H.: Low-cost navigation and guidance systems for unmanned aerial vehicles—part 1: vision-based and integrated sensors. Annual of Navigation 19(2), 71–98 (2012)

    Article  Google Scholar 

  18. Kaplan, E., Hegarty, C.: Understanding GPS: Principles and Applications, 2nd Edition, Artech house. ISBN-10: 1-58053-894-0 (2005)

  19. Parkinson, B. W., Spilker, J. J.: Global Positioning System: Theory and Practice. Volumes I and II. American Institute of Aeronautics and Astronautics Inc, Washington, DC (1996)

    Google Scholar 

  20. Sabatini, R., Rodríguez, L., Kaharkar, A., Bartel, C., Shaid, T., Zammit-Mangion, D.: Low-cost navigation and guidance systems for unmanned aerial vehicles—part 2: attitude determination and control. Annual of Navigation 20(1), 97–126 (2013)

    Article  Google Scholar 

  21. Purcell, Jr, G., Srinivasan, J., Young, L., DiNardo, S., Hushbeck Jr., E., Meehan, T., Munson, T., Yunck, T.: Measurement of aircraft position, velocity, and attitude using rogue GPS receivers. In: Proceedings of the 5th International Geodetic Symposium on Satellite Positioning, Las Cruces, NM

  22. GRAAS, F., Braasch, M.: GPS Interferometric attitude and heading determination: initial flight test results. Navigation 38(4), 297–316 (1991)

    Article  Google Scholar 

  23. Cohen, C. E.: Attitude determination using GPS. PhD thesis Department of Aeronautics and Astronautics, Stanford University (1992)

  24. Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E.: GNSS–Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media (2007)

  25. Sabatini, R., Palmerini, G.: Differential Global Positioning System (DGPS) for Flight Testing. In: Organisation, R.a.T. (ed.) AGARDograph 160, Flight Test Instrumentation Series, Research and Technology Organisation (2008)

  26. Feng, S., Ochieng, W., Moore, T., Hill, C., Hide, C.: Carrier phase-based integrity monitoring for high-accuracy positioning. GPS solutions 13(1), 13–22 (2009)

    Article  Google Scholar 

  27. Pervan, B. S., Lawrence, D. G., Parkinson, B. W.: Autonomous fault detection and removal using GPS carrier phase. IEEE Trans. Aerosp. Electron. Syst. 34(3), 897–906 (1998)

    Article  Google Scholar 

  28. Michalson, W., Hua, H.: GPS carrier-phase RAIM. In: Proceedings of the 8th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1995), pp. 1975–1984 (1995)

  29. Chang, X.W., Paige, C.C., Perepetchai, V.: Integrity methods using carrier phase. In: Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS 2001), Banff, June 58, pp. 235–245 (2001)

  30. Beutler, G., Davidson, D., Langley, R., Santerre, R., Vanicek, P., Wells, D.: Some Theoretical and Practical Aspects of Geodetic Positioning with the Global Positioning System Using Carrier Phase Difference Observations. Dept. In. of Surveying Engineering Technical Report (1984)

  31. Dai, Z.: On GPS Based Attitude Determination. Universitätsbibliothek Der Universität Siegen (2013)

  32. Altmayer, C.: Enhancing the integrity of integrated GPS/INS systems by cycle slip detection and correction. In: Intelligent Vehicles Symposium, 2000. IV 2000. Proceedings of the IEEE, pp. 174–179. IEEE

  33. El-Sheimy, N.: An expert knowledge GPS/INS system for mobile mapping and GIS applications. 2000: navigating into the New Millennium, 816–824 (2000)

  34. Sabatini, R., Moore, T., Hill, C.: A new avionics-based GNSS integrity augmentation system: part 2–integrity flags. J. Navig. 66(04), 501–522 (2013)

    Article  Google Scholar 

  35. Ramasamy, S., Sabatini, R., Gardi, A.: Towards a unified approach to cooperative and non-cooperative RPAS detect-and-avoid. In: Fourth Australasian Unmanned Systems Conference (2014)

  36. Gardi, A., Sabatini, R., Ramasamy, S., De Ridder, K.: 4-dimensional trajectory negotiation and validation system for the next generation air traffic management. In: Proceedings of AIAA Guidance, Navigation, and Control Conference (GNC 2013), Boston, MA, USA (2013)

  37. Lau, L., Cross, P.: Development and testing of a new ray-tracing approach to GNSS carrier-phase multipath modelling. J. Geod. 81(11), 713–732 (2007)

    Article  MATH  Google Scholar 

  38. Hata, M.: Empirical formula for propagation loss in land mobile radio services. IEEE Trans. Veh. Technol. 29(3), 317–325 (1980)

    Article  Google Scholar 

  39. Okumura, Y., Ohmori, E., Kawano, T., Fukuda, K.: Field strength and its variability in VHF and UHF land-mobile radio service. Rev. Elec. Commun. Lab. 16(9), 825–873 (1968)

    Google Scholar 

  40. Moore, T., Hill, C., Hide, C., Cross, P., Lau, L., Walsh, D., Cooper, J., Ioannides, R., Ochieng, W., Feng, S.: Development of a test bed facility for high accuracy positioning in difficult environments. In: Proceedings of ION GNSS 2005, The Institute of Navigation, Long Beach, 13–16 September (2005)

  41. Kim, D. -Y., Jang, J. -G., Kee, C. -D.: Integer ambiguity search technique using separatedgaussian variables. Int. J. Aeronaut. Space Sci. 5(2), 1–8 (2004)

    Google Scholar 

  42. Möller, T., Trumbore, B.: Fast, minimum-storage ray-triangle intersection. J. Graph Tools 2(1), 21–28 (1997)

    Article  Google Scholar 

  43. Lvovsky, A.I.: Fresnel equations Encyclopedia of Optical Engineering. Taylor and Francis: New York, Published online 27. pp 1–6 (2013)

  44. Kraus, J. D., Fleisch, D. A.: Eletromagnetics: with Applications. WCB/Mcgraw-Hill (1999)

  45. Ward, P. W.: GPS receiver RF interference monitoring, mitigation, and analysis techniques. Navigation 41(4), 367–392 (1994)

    Article  Google Scholar 

  46. Braasch, M. S., Van Dierendonck, A.: GPS receiver architectures and measurements. Proc. IEEE 87(1), 48–64 (1999)

  47. Dodson, A.H.: Propagation effects on GPS measurements. In: Institute of Engineering, Surveying and Space Geodesy - University of Nottingham, Nottingham, United Kingdom (2002)

  48. Collins, J. P.: Assessment and Development of a Tropospheric Delay Model for Aircraft Users of the Global Positioning System. University of New Brunswick Fredericton, New Brunswick (1999)

    Google Scholar 

  49. Black, H., Eisner, A.: Correcting satellite Doppler data for tropospheric effects. J. Geophys. Res. Atmos. 89(D2), 2616–2626 (1984)

    Article  Google Scholar 

  50. Friis, H. T.: The free space transmission equation. Proc. IRE 34, 254 (1946)

    Article  Google Scholar 

  51. Mubarak, O. M., Dempster, A. G.: Statistical analysis of early late phase for multipath detection. In: IGNSS Symposium. Citesee (2009)

  52. RTCA Special Committee 159, DO 229D: Minimum Operational Performance Standards for Global Positioning System/wide Area Augmentation Aystem Airborne Equipment. Radio Technical Commission for Aeronautics (RTCA) (2006)

  53. RTCA DO245A: Minimum Aviation Aystem Performance Standards for the Local Area Augmentation Aystem (LAAS). Technical Standard, DO245A, Radio Technical Commission for Aeronautics (RTCA) (2004)

  54. Sabatini, R., Moore, T., Hill, C., Ramasamy, S.: Investigation of GNSS integrity augmentation synergies with unmanned aircraft sense-and-avoid systems. In: SAE Technical Paper (2015)

  55. Will, A. B., Zak, S. H.: Modelling and control of an automated vehicle. Veh. Syst. Dyn. 27(3), 131–155 (1997)

    Article  Google Scholar 

  56. Jazar, R. N.: Vehicle Dynamics: Theory and Application. Springer Science & Business Media (2013)

  57. Ulsoy, A. G., Peng, H., Çakmakci, M.: Automotive Control Systems. Cambridge University Press (2012)

  58. Kelso, T.: Celestrak. Public domain satellite tracking data, http://celestrak.com/ [cited 13 march 2012] (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Sabatini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bijjahalli, S., Ramasamy, S. & Sabatini, R. A Novel Vehicle-Based GNSS Integrity Augmentation System for Autonomous Airport Surface Operations. J Intell Robot Syst 87, 379–403 (2017). https://doi.org/10.1007/s10846-017-0479-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0479-8

Keywords

Navigation