Skip to main content
Log in

Host–Guest Interactions of Risperidone with Natural and Modified Cyclodextrins: Phase Solubility, Thermodynamics and Molecular Modeling Studies

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

The solubility of risperidone (Risp) in aqueous buffered cyclodextrin (CD) solution was investigated for α-, β-, γ- and HP-β-CD. The effects of pH, ionic strength and temperature on complex stability were also explored. Neutral Risp tends to form higher order complexes (1:2) with both β- and HP-β-CD, but only 1:1 type complexes with α-, and γ-CD. The tendency of Risp to complex with cyclodextrins is in the order β-CD > HP-β-CD > γ-CD > α-CD. The 1:1 complex formation constant of Risp/HP-β-CD increases with increasing ionic strength in an opposite trend to the inherent solubility (S 0) of Risp, thus indicating significant hydrophobic effect. The hydrophobic effect contributes to the extent of 72% towards neutral Risp/HP-β-CD complex stability, while specific interactions contribute only 4.7 kJ/mol. Thermodynamic studies showed that 1:1 Risp/HP-β-CD complex formation is driven by a favorable enthalpy change (ΔH 0=−31.2 kJ/mol, ΔS 0=−7 J/mol.K) while the 1:2 complex is largely driven by entropy changes (ΔH 0=−5.0 kJ/mol, ΔS 0=42 J/mol.K). Complex stability was found to vary with pH, with a higher formation constant for neutral Risp. Molecular mechanical computations using MM (atomic charges and bond dipole algorithms) and Amber force fields, which were carried out to explore possible sites of interactions between Risp and CDs and to rationalize complex stoichiometry, produced similar results concerning optimal inclusion complex geometries and stoichiometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Duchene (1987) Cyclodextrins and Their Industrial Uses Editions de Sante’ Paris

    Google Scholar 

  2. J. Szejtli (1998) Chem. Rev. 98 1743 Occurrence Handle10.1021/cr970022c Occurrence Handle11848947

    Article  PubMed  Google Scholar 

  3. K. Uekama F. Hirayama T. Irie (1998) Chem. Rev. 98 2045 Occurrence Handle10.1021/cr970025p Occurrence Handle11848959

    Article  PubMed  Google Scholar 

  4. I. Tabushi Y. Kiyousuke T. Sugimoto K. Yamamura (1978) J. Am. Chem. Soc. 100 916 Occurrence Handle10.1021/ja00471a043

    Article  Google Scholar 

  5. M.V. Rekharsky Y. Inoue (1998) Chem. Rev. 98 1875 Occurrence Handle10.1021/cr970015o Occurrence Handle11848952

    Article  PubMed  Google Scholar 

  6. DJ. Barbirica R.H. Rossib Particlede E.A. Castro (2001) J. Mol. Struct. (THEOCHEM). 537 235 Occurrence Handle10.1016/S0166-1280(00)00680-1

    Article  Google Scholar 

  7. M. Fathallah F. Fotiadu C. Jaime (1994) J. Org. Chem. 59 1288 Occurrence Handle10.1021/jo00085a015

    Article  Google Scholar 

  8. JM. Madrid J. Pozuelo F. Mendicuti W.L. Mattice (1997) J. Coll. Interface. Sci. 193 112 Occurrence Handle10.1006/jcis.1997.5061

    Article  Google Scholar 

  9. JM. Madrid F. Mendicuti W.L. Mattice (1998) J. Phys. Chem. B. 102 2037 Occurrence Handle10.1021/jp9728870

    Article  Google Scholar 

  10. JM. Madrid M. Villafruela R. Serrano F. Mendicuti (1999) J. Phys. Chem. B. 103 4847 Occurrence Handle10.1021/jp9838240

    Article  Google Scholar 

  11. P.M. Ivanov C. Jaime (1996) J. Mol. Struct. 377 137 Occurrence Handle10.1016/0022-2860(95)09133-5

    Article  Google Scholar 

  12. E. Cervello C. Jaime (1998) J. Mol. Struct. (THEOCHEM). 428 195 Occurrence Handle10.1016/S0166-1280(97)00279-0

    Article  Google Scholar 

  13. P. Jiang HW. Sun RX. Shen J. Shi C.M. Lai (2000) J. Mol. Struct. (THEOCHEM). 528 211 Occurrence Handle10.1016/S0166-1280(99)00492-3

    Article  Google Scholar 

  14. A. Mele G. Raffaini F. Ganazzoli M. Juza V. Schurig (2003) Carbohydr. Res. 338 625 Occurrence Handle10.1016/S0008-6215(02)00493-7 Occurrence Handle12644376

    Article  PubMed  Google Scholar 

  15. M. Faucci F. Melani P. Mura (2002) Chem. Phy. Lett. 358 383 Occurrence Handle10.1016/S0009-2614(02)00410-4

    Article  Google Scholar 

  16. F. Melani N. Mulinacci A. Romani G. Mazzi F.F. Vincieri (1998) Int. J. Pharm. 166 145 Occurrence Handle10.1016/S0378-5173(98)00036-2

    Article  Google Scholar 

  17. E. Cervello F. Mazzucchi C. Jaime (2000) J. Mol. Struct. (THEOCHEM). 530 155 Occurrence Handle10.1016/S0166-1280(00)00328-6

    Article  Google Scholar 

  18. A. Megens (1994) Psychopharmacol. Berl. 114 9

    Google Scholar 

  19. T. Higuchi K.A. Connors (1965) ArticleTitlePhase Solubility Techniques Adv Anal, Chem. Instrum. 4 117

    Google Scholar 

  20. M.B. Zughul A.A. Badwan (1998) J. Inclu. Phenom. Mol. Recog. Chem. 31 243 Occurrence Handle10.1023/A:1007965424219

    Article  Google Scholar 

  21. MB. Zughul M. Al-Omari A.A. Badwan (1998) Pharm. Dev. Technol. 3 43 Occurrence Handle9532599

    PubMed  Google Scholar 

  22. M.B. Zughul A.A. Badwan (1997) Int. J. Pharm. 151 109 Occurrence Handle10.1016/S0378-5173(97)04901-6

    Article  Google Scholar 

  23. NL. Allinger YH. Yuh J.H. Lii (1989) J. Am. Chem. Soc. 111 8551 Occurrence Handle10.1021/ja00205a001

    Article  Google Scholar 

  24. WD. Cornell P. Cieplak CI. Bayly IR. Gould KM. Merz SuffixJr. DM. Ferguson DC. Spellmeyer T. Fox JW. Caldwell P.A. Kollman (1995) J. Am. Chem. Soc. 117 5179 Occurrence Handle10.1021/ja00124a002

    Article  Google Scholar 

  25. M.J.S. Dewar EG. Zoebisch EF. Healy J.J.P. Stewart (1985) J. Am. Chem. Soc. 107 3902 Occurrence Handle10.1021/ja00299a024

    Article  Google Scholar 

  26. R. Puliti CA. Mattia L. Padiano (1998) Carbohydr. Res. 310 1 Occurrence Handle10.1016/S0008-6215(98)00150-5 Occurrence Handle9867418

    Article  PubMed  Google Scholar 

  27. K. Linder W. Saenger (1982) Carbohydr. Res. 99 103 Occurrence Handle10.1016/S0008-6215(00)81901-1

    Article  Google Scholar 

  28. W. Saenger J. Jacob K. Gessler T. Steiner D. Hoffman H. Sanbe K. Koizumi S.M. Smith T. Takaha (1998) Chem. Rev. 98 1787 Occurrence Handle10.1021/cr9700181 Occurrence Handle11848949

    Article  PubMed  Google Scholar 

  29. K. Harata (1987) Bull. Chem. Jpn. 60 2763

    Google Scholar 

  30. A. Yoshida M. Yamamoto T. Itoh T. Irie F. Hirayama K. Uekama (1990) Chem. Pharm. Bull. Tokyo. 38 176 Occurrence Handle2337940

    PubMed  Google Scholar 

  31. F. Kopecky B. Kopecky P. Kaclik (2001) J. Incl. Phenom. 39 215 Occurrence Handle10.1023/A:1011155208944

    Article  Google Scholar 

  32. A. Buvari-Barcza L. Barcza (1999) Talanta 49 577 Occurrence Handle10.1016/S0039-9140(99)00037-5

    Article  Google Scholar 

  33. A. Buvari-Barcza E. Rak A. Meszaros L. Barcza (1998) J. Incl. Phenom. 32 453 Occurrence Handle10.1023/A:1007989822622

    Article  Google Scholar 

  34. F. D’Anna PL. Meo S. Riela M. Gruttadauria R. Noto (2001) Tetrahedron. 57 6823 Occurrence Handle10.1016/S0040-4020(01)00635-4

    Article  Google Scholar 

  35. SE. Brown JH. Coates PA. Duckworth SF. Lincoln CJ. Easton B.L. May (1993) J. Chem. Soc., Faraday Trans. 89 1035

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Zughul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Barghouthi, M.I., Masoud, N.A., Al-Kafawein, J.K. et al. Host–Guest Interactions of Risperidone with Natural and Modified Cyclodextrins: Phase Solubility, Thermodynamics and Molecular Modeling Studies. J Incl Phenom Macrocycl Chem 53, 15–22 (2005). https://doi.org/10.1007/s10847-004-8212-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-004-8212-1

Keywords

Navigation