Skip to main content
Log in

Flexible ligand synthesis, characterization and liquid phase hydroxylation of phenol by H2O2 with host (nanopores of zeolite-Y)/guest [VO([R]2–N2X2)]2+ (R = H, CH3; X = NH, O, S) nanocomposite materials

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Encapsulation of Oxovanadium(IV) complexes of 12-membered macrocyclic ligands having N2O2, N2S2 and N4 donor atoms in the nanocavity of zeolite-Y by the Flexible-Ligand Method (FLM) have been described. Oxovanadium(IV) complexes with macrocyclic ligands were entrapped in the nanocavity of zeolite-Y by a two-step process in the liquid phase: (i) adsorption of precursor ligand; 1,2-di(o-aminophenyl-, amino, oxo, thio)ethane, (N2X2); in the supercages of VO(IV)-Y; ([VO(N2X2)]2+-Y (X = NH, O, S); and (ii) in situ condensation of the oxovanadium(IV) precursor complex with glyoxal or biacetyl; [VO([R]2–N2X2)]2+-Y (R = H, CH3). The new Host–Guest Nanocomposite Materials (HGNM, [VO([R]2–N2X2)]2+-Y) have been characterized by FT-IR, DRS and UV–Vis spectroscopic techniques, XRD and elemental analysis, as well as nitrogen adsorption. Liquid-phase selective hydroxylation of phenol with H2O2 to a mixture of catechol and hydroquinone in CH3CN has been reported using [VO([R]2–N2X2)]2+-Y as catalysts. Reaction conditions have been optimized by considering the concentration of substrate and oxidant, amount of catalyst, effect of time, volume of solvent and temperature. Under the optimized reaction conditions, [VO([H]2–N4)]2+-Y gave 50.1% conversion of phenol after 6 h. All these catalysts are more selective toward catechol formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vos, D.E., Vankelecom, I.F.J., Jacobs, P.A. (eds.): Chiral Catalyst Inmobilization and Recycling. Wiley, Weinheim (2000)

    Google Scholar 

  2. Gevers, L.E.M., Vankelecom, I.F.J., Jacobs, P.A.: Solvent-resistant nanofiltration with filled polydimethylsiloxane (PDMS) membranes. J. Membr. Sci. 278, 199–204 (2006). doi:10.1016/j.memsci.2005.10.056

    Article  CAS  Google Scholar 

  3. Langhendries, G., Baron, G.V., Vankelecom, I.F.J., Parton, R.F., Jacobs, P.A.: Selective hydrocarbon oxidation using a liquid-phase catalytic membrane reactor. Catal. Today 56, 131–135 (2000). doi:10.1016/S0920-5861(99)00269-2

    Article  CAS  Google Scholar 

  4. Knops-Gerrits, P.P., Vankelecom, I.F.J., Béatse, E., Jacobs, P.A.: Epoxidation of olefines with PDMS membranes containing zeolite occluded manganese diimine complexes. Catal. Today 32, 63–70 (1996). doi:10.1016/S0920-5861(96)00179-4

    Article  CAS  Google Scholar 

  5. Parton, R.F., Vankelecom, I.F.J., Tas, D., Janssen, K.B.M., Knops-Gerrits, P.P., Jacobs, P.A.: Membrane occluded catalysts: a higher order mimic with improved performance. J. Mol. Catal. Chem. 113, 283–292 (1996). doi:10.1016/S1381-1169(96)00091-X

    Article  CAS  Google Scholar 

  6. Vankelecom, I.F.J., Parton, R.F., Casselman, M.J.A., Uytterhoeven, J.B., Jacobs, P.A.: Oxidation of cyclohexane using FePcY-zeozymes occluded in polydimethylsiloxane membranes. J. Catal. 163, 457–464 (1996). doi:10.1006/jcat.1996.0347

    Article  CAS  Google Scholar 

  7. Schüth, F., Schmidt, W.: Microporous and mesoporous materials. Adv. Mater. 14, 629–638 (2002). doi:10.1002/1521-4095(20020503)14:9<629::AID-ADMA629>3.0.CO;2-B

    Article  Google Scholar 

  8. Schuth, F., Sing, K., Weitkamp, J. (eds.): Handbook of Porous Solids, vol. I–V. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  9. Kaucky, D., Vondrova, A., Dedecek, J., Wichterlova, B.: Activity of Co ion sites in ZSM-5, ferrierite, and mordenite in selective catalytic reduction of NO with methane. J. Catal. 194, 318–329 (2000). doi:10.1006/jcat.2000.2925

    Article  CAS  Google Scholar 

  10. Połtowicz, J., Pamin, K., Tabor, E., Haber, J., Adamski, A., Sojka, Z.: Metallosalen complexes immobilized in zeolite NaX as catalysts of aerobic oxidation of cyclooctane. Appl. Catal. Gen. 299, 235–242 (2006). doi:10.1016/j.apcata.2005.10.034

    Article  Google Scholar 

  11. Jacob, C.R., Verkey, S.P., Ratnasamy, P.: Selective oxidation over copper and manganese salens encapsulated in zeolites. Microporous Mesoporous Mater. 22, 465–474 (1998)

    Article  CAS  Google Scholar 

  12. Chen, P., Fan, B., Song, M., Jin, C., Ma, J., Li, R.: Zeolite-encapsulated Ru(III) tetrahydro-Schiff base complex: an efficient heterogeneous catalyst for the hydrogenation of benzene under mild conditions. Catal. Commun. 7, 969–973 (2006)

    Article  CAS  Google Scholar 

  13. Jin, C., Fan, W., Jia, Y., Fan, B., Ma, J., Li, R.: Encapsulation of transition metal tetrahydro-Schiff base complexes in zeolite Y and their catalytic properties for the oxidation of cycloalkanes. J. Mol. Catal. A: Chem. 249, 23–30 (2006)

    Article  CAS  Google Scholar 

  14. Knopsgerrits, P.P., De vos, D., Thibaultstarzyk, F., Jacobs, P.A.: Zeolite-encapsulated Mn(II) complexes as catalysts for selective alkene oxidation. Nature 369, 543–546 (1994)

    Article  CAS  Google Scholar 

  15. Balkus Jr., K.J., Khanrnamedova, A.K., Dixon, K.M., Bedioui, F.: Oxidations catalyzed by zeolite ship-in-a-bottle complexes. Appl. Catal. A: Gen. 143, 159–173 (1996)

    Article  CAS  Google Scholar 

  16. Salavati-Niasari, M., Davar, F.: Host (nanodimensional pores of zeolite Y)-guest (3, 10-dialkyl-dibenzo-1, 3, 5, 8, 10, 12-hexaazacyclotetradecane, [Ni(R2Bzo2[14]aneN6)]2 +) nanocomposite materials: synthesis, characterization and catalytic oxidation of cyclohexene. Inorg. Chem. Commun. 9, 263–268 (2006)

    Article  CAS  Google Scholar 

  17. Salavati-Niasari, M.: Host (nanocavity of zeolite-Y)-guest (tetraaza[14]annulene copper(II) complexes) nanocomposite materials: synthesis, characterization and liquid phase oxidation of benzyl alcohol. J. Mol. Catal. A: Chem. 245, 192–199 (2006)

    Article  CAS  Google Scholar 

  18. Salavati-Niasari, M., Davar, F.: In situ one-pot template synthesis (IOPTS) and characterization of copper(II) complexes of 14-membered hexaaza macrocyclic ligand “3, 10-dialkyl-dibenzo-1, 3, 5, 8, 10, 12 hexaazacyclotetradecane”. Inorg. Chem. Commun. 9, 175–179 (2006)

    Article  CAS  Google Scholar 

  19. Joseph, T., Srinivas, D., Gopinath, C.S., Halligudi, S.B.: Spectroscopic and catalytic activity studies of VO(Saloph) complexes encapsulated in zeolite-Y and Al-MCM-41 molecular sieves. Catal. Lett. 83, 209–214 (2002)

    Article  CAS  Google Scholar 

  20. Bowers, C., Dutta, P.K.: Olefin oxidation by zeolite-encapsulated Mn(salen)+ complexes under ambient conditions. J. Catal. 122, 271–279 (1990)

    Article  CAS  Google Scholar 

  21. Paez-Mozo, E., Gabriunas, N., Maggi, R., Acosta, D., Ruiz, P., Delmon, B.: Selective olefin oxidation with cobalt phthalocyanine encapsulated in Y-zeolite. J. Mol. Catal. 91, 251–258 (1994)

    Article  CAS  Google Scholar 

  22. Raja, R., Ratnasamy, P.: Selective oxidation of phenols using copper complexes encapsulated in zeolites. Appl. Catal. A: Gen. 143, 145–158 (1996)

    Article  CAS  Google Scholar 

  23. Jacob, C.R., Varkey, S.P., Ratnasamy, P.: Oxidation of para-xylene over zeolite-encapsulated copper and manganese complexes. Appl. Catal. A: Gen. 182, 91–96 (1999)

    Article  CAS  Google Scholar 

  24. Maurya, M.R., Titinchi, S.J.J., Chand, S.: Spectroscopic and catalytic activity study of N, N′-bis(salicylidene)propane-1, 3-diamine copper(II) encapsulated in zeolite-Y. Appl. Catal. A: Gen. 228, 177–187 (2002)

    Article  CAS  Google Scholar 

  25. Alvarez, H.M., Malta, L.F.B., Herbst, M.H., Horn Jr., A., Antunes, O.A.C.: Catalytic isosafrol oxidation mediated by impregnated and encapsulated vanadyl-Y-zeolite under microwave irradiation. Appl. Catal. A: Gen. 326, 82–88 (2007)

    Article  CAS  Google Scholar 

  26. Maurya, M.R., Chandrakar, A.K., Chand, Sh.: Zeolite-Y encapsulated metal complexes of oxovanadium(VI), copper(II) and nickel(II) as catalyst for the oxidation of styrene, cyclohexane and methyl phenyl sulfide. J. Mol. Catal. A: Chem. 274, 192–201 (2007)

    Article  CAS  Google Scholar 

  27. Salavati-Niasari, M.: Ship-in-a-bottle synthesis, characterization and catalytic oxidation of styrene by host (nanopores of zeolite-Y)/guest ([bis(2-hydroxyanil)acetylacetonato manganese(III)]) nanocomposite materials (HGNM). Microporous Mesoporous Mater. 95, 248–256 (2006)

    Article  CAS  Google Scholar 

  28. Lineares-Solano, A.: Textural characterization of porous carbons by physical adsorption of gases. In: Figueiredo, J.L., Moulijn, J.A. (eds.) Carbon and coal gasification, pp. 137–187. M. Nijhoff, MA, Dordrecht (1986)

  29. Singh, P.K., Koacher, J.K., Tondan, J.P.: Boron complexes of some oxygen-nitrogen and sulphur-nitrogen containing chelating agents. J. Inorg. Nucl. Chem. 43, 1755–1758 (1981)

    Article  CAS  Google Scholar 

  30. Mathew, M., Carty, A.J., Palenik, G.J.: Unusual complex containing bridging vanadyl groups. Crystal structure of N, N′-propylenebis(salicylaldiminato)oxovanadium(IV). J. Am. Chem. Soc. 92, 3197–3198 (1970)

    Article  CAS  Google Scholar 

  31. Ballhausen, C.J., Gray, H.B.: Molecular Orbital Theory. Benjamin, New York (1965)

    Google Scholar 

  32. Salavati-Niasari, M., Ganjali, M.R., Norouzi, P.: Host (nanopores of zeolite Y)-guest (oxovanadium(IV) tetradentate Schiff-base complexes) nanocomposite materials: synthesis, characterization and liquid phase hydroxylation of phenol with hydrogen peroxide. J. Porous Mater. 14, 423–432 (2007)

    Article  CAS  Google Scholar 

  33. Salavati-Niasari, M.: Synthesis and characterization of host (nanodimensional pores of zeolite-Y)–guest [unsaturated 16-membered octaaza–macrocycle manganese(II), cobalt(II), nickel(II), copper(II), and zinc(II) complexes] nanocomposite materials. Chem. Lett. 34, 1444–1445 (2005)

    Article  CAS  Google Scholar 

  34. Salavati-Niasari, M.: Nanoscale microreactor-encapsulation of 16-membered hexaaza macrocycle nickel(II) complexes: in situ one-pot template synthesis (IOPTS), characterization and catalytic activity. Microporous Mesoporous Mater. 92, 173–180 (2006)

    Article  CAS  Google Scholar 

  35. Salavati-Niasari, M., Davar, F.: Synthesis, characterization and catalytic activity of copper(II) complexes of 14-membered macrocyclic ligand; 3, 10-dialkyl-dibenzo-1, 3, 5, 8, 10, 12-hexaazacyclotetradecanel/zeolite encapsulated nanocomposite materials. Inorg. Chem. Commun. 9, 304–309 (2006)

    Article  CAS  Google Scholar 

  36. Salavati-Niasari, M., Shakouri-Arani, M., Davar, F.: Flexible ligand synthesis, characterization and catalytic oxidation of cyclohexane with host (nanocavity of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of tetrahydro-salophen) nanocomposite materials. Microporous Mesoporous Mater. 116, 77–85 (2008)

    Article  CAS  Google Scholar 

  37. Salavati-Niasari, M.: Nanoscale microreactor-encapsulation 14-membered nickel(II) hexamethyl tetraaza: synthesis, characterization and catalytic activity. J. Mol. Catal. A: Chem. 229, 159–164 (2005)

    Article  CAS  Google Scholar 

  38. Salavati-Niasari, M., Elzami, M.R., Mansournia, M.R., Hydarzadeh, S.: Alumina-supported vanadyl complexes as catalysts for the C-H bond activation of cyclohexene with tert-butylhydroperoxide. J. Mol. Catal. A 221, 169–175 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Author is grateful to Council of University of Kashan for providing financial support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salavati-Niasari, M. Flexible ligand synthesis, characterization and liquid phase hydroxylation of phenol by H2O2 with host (nanopores of zeolite-Y)/guest [VO([R]2–N2X2)]2+ (R = H, CH3; X = NH, O, S) nanocomposite materials. J Incl Phenom Macrocycl Chem 65, 349–360 (2009). https://doi.org/10.1007/s10847-009-9592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-009-9592-z

Keywords

Navigation