Skip to main content
Log in

Rapamycin-cyclodextrin complexation: improved solubility and dissolution rate

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The objective of this study was to improve poor aqueous solubility and dissolution properties of anticancer drug rapamycin through formation of inclusion complexes with natural and modified cyclodextrins. Of the cyclodextrins tested, γ-cyclodextrin and hydroxypropyl-γ-cyclodextrin did not complex with rapamycin. However, complexes of rapamycin with β-cyclodextrin, methyl-β-cyclodextrin and hydroxypropyl-β-cyclodextrin were prepared and characterized by techniques such as Fourier Transform infrared spectroscopy, differential scanning calorimetry, phase solubility analysis and in vitro dissolution studies. According to the characterization data for the complexes, rapamycin water solubility was highly enhanced by all three β-cyclodextrins with methyl-β-cyclodextrin complex resulting in particularly higher solubility enhancement. FTIR spectra and DSC thermograms supported the formation of inclusion complexes. The complexes showed highly improved dissolution rate in water. Complexation with cyclodextrin derivatives such as methyl-β-cyclodextrin and hydroxypropyl-β-cyclodextrin can provide promising alternatives for the formulation of rapamycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CD:

Cyclodextrin

βCD:

β-Cyclodextrin

MβCD:

Methyl-β-cyclodextrin

HPβCD:

Hydroxypropyl-β-cyclodextrin

γCD:

γ-Cyclodextrin

HPγCD:

Hydroxypropyl-γ-cyclodextrin

Rapa:

Rapamycin

References

  1. Baker, H., Sidorowicz, A., Sehgal, S.N.: Rapamycin (AY-22, 989), a new antifungal antibiotic. III. In vitro and in vivo evaluation. J. Antibiot. (Tokyo) 31, 539–545 (1978)

    CAS  Google Scholar 

  2. Martel, R.R., Klicius, J., Galet, S.: Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can. J. Physiol. Pharmacol. 55, 48–51 (1977)

    Article  CAS  Google Scholar 

  3. Collier, S.J.: Immunosuppressive drugs. Curr. Opin. Immunol. 2, 854–858 (1989)

    Article  CAS  Google Scholar 

  4. Dumont, F.J., Staruch, M.J., Koprak, S.L., Melino, M.R., Sigal, N.H.: Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J. Immunol. 144, 251–258 (1990)

    CAS  Google Scholar 

  5. Woltman, A.M., van der Kooij, S.W., Coffer, P.J., Offringa, R., Daha, M.R., van Kooten, C.: Rapamycin specifically interferes with GMCSF signaling in human dendritic cells, leading to apoptosis via increased p27KIP1 expression. Blood 101, 1439–1445 (2003)

    Article  CAS  Google Scholar 

  6. Eng, C.P., Sehgal, S.N., Vezina, C.: Activity of rapamycin (AY-22, 989) against transplanted tumors. J. Antibiot. (Tokyo) 37, 1231–1237 (1984)

    CAS  Google Scholar 

  7. Yatscoff, R.: Pharmacokinetics of rapamycin. Transplant Proc. 28, 970–973 (1996)

    CAS  Google Scholar 

  8. Rapamune® Label and Patient Information, Wyeth Pharmaceuticals Inc. Philadelphia, PA 19101. http://www.accessdata.fda.gov/drugsatfda_docs/label/2004/21083s017,21110s020lbl.pdf (2010). Accessed 29 June 2010

  9. De, T., Trieu, V., Yim, Z., Cordia, J., Yang, A., Beals, B., Ci, S., Louie, L., Desai, N.: Nanoparticle albumin-bound (nab) rapamycin as an anticancer agent [abstract]. In: Proceedings of the 98th Annual Meeting of the American Association for Cancer Research, Los Angeles, Meeting Abstracts, 14–18 April 2007

  10. Alemdar, A.Y., Sadi, D., McAlister, V.C., Mendez, I.: Liposomal formulations of tacrolimus and rapamycin increase graft survival and fiber outgrowth of dopaminergic grafts. Cell Transplant. 13, 263–271 (2004)

    Article  Google Scholar 

  11. Rouf, M.A., Vural, I., Renoir, J.-M., Hincal, A.A.: Development and characterization of liposomal formulations for rapamycin delivery and investigation of their antiproliferative effect on MCF7 cells. J. Liposome Res. 19(4), 322–331 (2009)

    Article  CAS  Google Scholar 

  12. Buech, G., Bertelmann, E., Pleyer, U., Siebenbrodt, I., Borchert, H.H.: Formulation of sirolimus eye drops and corneal permeation studies. J. Ocul. Pharmacol. Ther. 23, 292–303 (2007)

    Article  CAS  Google Scholar 

  13. Forrest, M.L., Won, C.Y., Malick, A.W., Kwon, G.S.: In vitro release of the mTOR inhibitor rapamycin from poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelles. J. Control Release 110, 370–377 (2006)

    Article  CAS  Google Scholar 

  14. Kipshidze, N.N., Porter, T.R., Dangas, G., Yazdi, H., Tio, F., Xie, F., Hellinga, D., Wolfram, R., Seabron, R., Waksman, R., Abizaid, A., Roubin, G., Iyer, S., Colombo, A., Leon, M.B., Moses, J.W., Iversen, P.: Novel site-specific systemic delivery of Rapamycin with perfluorobutane gas microbubble carrier reduced neointimal formation in a porcine coronary restenosis model. Catheter Cardiovasc. Interv. 64, 389–394 (2005)

    Article  Google Scholar 

  15. Brara, P.S., Moussavian, M., Grise, M.A., Reilly, J.P., Fernandez, M., Schatz, R.A., Teirstein, P.S.: Pilot trial of oral rapamycin for recalcitrant restenosis. Circulation 107, 1722–1724 (2003)

    Article  Google Scholar 

  16. Ray, G.M., Nawarskas, J.J., Frishman, W.H.: The paclitaxel-eluting stent in percutaneous coronary intervention: part II: Comparison with the sirolimus-eluting stent, economics, and unanswered questions. Cardiol. Rev. 14, 143–150 (2006)

    Article  Google Scholar 

  17. Pires, N.M., van, der Hoeven, B.L., de Vries, M.R., Havekes, L.M., van Vlijmen, B.J., Hennink, W.E., Quax, P.H., Jukema, J.W.: Local perivascular delivery of anti-restenotic agents from a drug-eluting poly(epsilon-caprolactone) stent cuff. Biomaterials 26, 5386–5394 (2005)

    Article  CAS  Google Scholar 

  18. Sousa, J.E., Sousa, A.G., Costa, M.A., Abizaid, A.C., Feres, F.: Use of rapamycin-impregnated stents in coronary arteries. Trans. Proc. 35, 165S–170S (2003)

    Article  CAS  Google Scholar 

  19. Wang, X., Venkatraman, S.S., Boey, F.Y., Loo, J.S., Tan, L.P.: Controlled release of sirolimus from a multilayered PLGA stent matrix. Biomaterials 27, 5525–5588 (2006)

    Google Scholar 

  20. Szente, L., Szejtli, J.: Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv. Drug Deliv. Rev. 36, 17–38 (1999)

    Article  CAS  Google Scholar 

  21. Challa, R., Ahuja, A., Ali, J., Khar, R.K.: Cyclodextrins in drug delivery: an updated review. AAPS Pharm. Sci. Tech. 6, E329–E357 (2005)

    Article  Google Scholar 

  22. Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)

    CAS  Google Scholar 

  23. Nogami, H., Nagai, T., Yotsuyanagi, Y.: Dissolution phenomena of organic medicinals involving simultaneous phase change. Chem. Pharm. Bull. 17, 499–509 (1969)

    CAS  Google Scholar 

  24. Trapani, G., Latrofa, A., Franco, M., Pantaleo, M.R., Sanna, E., Massa, F., Tuveri, F., Liso, G.: Complexation of zolpidem with 2-hydroxypropyl-ß-, methyl-ß-, and 2-hydroxypropyl-γ-cyclodextrin: effect on aqueous solubility, dissolution rate, and ataxic activity in rat. J. Pharm. Sci. 89, 1443–1451 (2000)

    Article  CAS  Google Scholar 

  25. Ferron, G.M., Conway, W.D., Jusko, W.J.: Lipophilic benzamide and anilide derivatives as high-performance liquid chromatography internal standards: application to sirolimus(rapamycin) determination. J. Chromatog. B 703, 243–251 (1997)

    Article  CAS  Google Scholar 

  26. Holt, D.W., Lee, T., Jones, K., Johnston, A.: Validation of an assay for routine monitoring of sirolimus using HPLC with mass spectrometric detection. Clin. Chem. 46, 1179–1183 (1997)

    Google Scholar 

  27. Uekama, K.: Pharmaceutical applications of methylated cyclodextrins. Pharm. Int. 6, 61–65 (1985)

    CAS  Google Scholar 

  28. Liu, L., GUO, Q.-X.: The driving forces in the inclusion complexation of cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 42, 1–14 (2002)

    Article  CAS  Google Scholar 

  29. Otero-Espinar, F., Anguiano-Igea, S., Garcia-Gonzalez, J., Vila-Jato, J., Blanco-Mendez, J.: Interaction of naproxen with b-cyclodextrin in solution and in the solid state. Int. J. Pharm. 79, 149–157 (1992)

    Article  CAS  Google Scholar 

  30. Kacso, I., Borodi, G., Farcas, S. I., and Bratu, I: Inclusion compound of vitamin B13 in β-Cyclodextrin. J. Phys.: Conference Series 182 (2009). doi:10.1088/1742-6596/182/1/012009

  31. Hassan, M., Suleiman, M., Najib, N.: Improvement of the in vitro dissolution characteristics of famotidine by inclusion in b-cyclo-dextrin. Int. J. Pharm. 58, 19–24 (1990)

    Article  CAS  Google Scholar 

  32. Marques, H.C., Hadgraft, J., Kallaway, I.: Studies of cyclodextrin inclusion complexes. I. The salbutamol–cyclodextrin complex as studied by phase solubility and DSC. Int. J. Pharm. 63, 259–266 (1990)

    Article  Google Scholar 

  33. Szejtli, J.: Medicinal applications of cyclodextrins. Med. Res. Rev. 14, 353–386 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank Dr. Christoph Winterhalter-Wacker Chemie AG, Germany for the kind supply of CAVASOL® products used in this study. Prof. Murat Şen from Department of Polymer Chemistry, Chemistry Division, Hacettepe University-Ankara is acknowledged for his assistance in FTIR and DSC analysis. Mr. Erhan Vargun of Varpa Co. Ltd, Ankara is also acknowledged for his support during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abdur Rouf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdur Rouf, M., Vural, I., Bilensoy, E. et al. Rapamycin-cyclodextrin complexation: improved solubility and dissolution rate. J Incl Phenom Macrocycl Chem 70, 167–175 (2011). https://doi.org/10.1007/s10847-010-9885-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9885-2

Keywords

Navigation