Skip to main content
Log in

Novel deep-cavity calix[4]arene derivatives with large s-triazine conjugate systems: synthesis and complexation for dyes

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Two novel deep-cavity calix[4]arenes 3 and 4 with large s-triazine π-conjugate systems were designed and synthesized in high yields by reacting calix[4]arene with mono phenyl-substituted cyanuric chloride or further substitution with aniline. The liquid–liquid extraction experiment showed that they possessed excellent extraction abilities towards one cationic and three anionic dyes (Orange I, methylene blue, neutral red, brilliant green). The highest extraction percentage of compound 4 was 88.8 % for brilliant green. The complexation UV–Vis spectra of compounds 3 and 4 with four dyes indicated the existences of complexation action between hosts and guests with 1:1 ratio of complexation in DMSO solution. The association constants suggested that the larger π-conjugate system of compound 4 possessed the stronger complexation abilities than that of compound 3. The association constant of compound 4 with BG was as high as 8.1 × 106 M−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Asfari, Z., BÖhmer, V., Harrowfield, J., Vicens, J.: Calixarenes 2001. Kluwer, Dordrecht (2001)

    Google Scholar 

  2. Joseph, R., Rao, C.P.: Ion and molecular recognition by lower rim 1,3-di-conjugates of calix[4]arene as receptors. Chem. Rev. 111, 4658–4702 (2011)

    Article  CAS  Google Scholar 

  3. Bucher, C., Zimmerman, R.S., Lynch, V., Kral, V., Sessler, J.L.: Synthesis of novel expanded calixphyrins: anion binding properties of a calix[6]phyrin with a deep cavity. J. Am. Chem. Soc. 123, 2099–2100 (2001)

    Article  CAS  Google Scholar 

  4. Woods, C.J., Camiolo, S., Light, M.E., Coles, S.J., Hursthouse, M.B., King, M.A., Gale, P.A., Essex, J.W.: Fluoride-selective binding in a new deep cavity calix[4]pyrrole: experiment and theory. J. Am. Chem. Soc. 124, 8644–8652 (2002)

    Article  CAS  Google Scholar 

  5. Botana, E., Nattinen, K., Prados, P., Rissanen, K., deMendoza, J.: p-(1H-phenanthro[9,10-d]imidazol-2-yl)-substituted calix[4]arene, a deep cavity for guest inclusion. Org. Lett. 6, 1091–1094 (2004)

    Article  CAS  Google Scholar 

  6. Kuhnert, N., Le-Gresley, A.: The use of deep cavity tetraformyl calix[4]arenes in the synthesis of static and dynamic macrocyclic libraries. Tetrahedron Lett. 46, 2059–2062 (2005)

    Article  CAS  Google Scholar 

  7. Zeng, X.S., Batsanov, A.S., Bryce, M.R.: Calix[6]arene derivatives selectively functionalized at alternate sites on the smaller rim with 2-phenylpyridine and 2-fluorenylpyridine substituents to provide deep cavities. J. Org. Chem. 71, 9589–9594 (2006)

    Article  CAS  Google Scholar 

  8. Chawla, H.M., Kumar, S., Pant, N., Santra, A., Sriniwas, K., Kumar, N., Black, D.S.: Synthesis and evaluation of deep cavity imidazolyl calix[n]arenes. J. Incl. Phenom. Macrocycl. Chem. 71, 169–178 (2011)

    Article  CAS  Google Scholar 

  9. Nimse, S.B., Kim, J., Ta, V., Kim, H., Song, K., Jung, C., Nguyen, V., Kim, T.: New water-soluble iminecalix[4]arene with a deep hydrophobic cavity. Tetrahedron Lett. 50, 7346–7350 (2009)

    Article  CAS  Google Scholar 

  10. Osipov, M., Chu, Q., Geib, S.J., Curran, D.P., Weber, S.G.: Synthesis of deep-cavity fluorous calix[4]arenes as molecular recognition scaffolds. Beilstein J. Org. Chem. 4, 28 (2008). doi:10.3762/bjoc.4.36

    Article  Google Scholar 

  11. Crini, G., Morcellet, M.: Synthesis and applications of adsorbents containing cyclodextrins. J. Sep. Sci. 25, 789–813 (2002)

    Article  CAS  Google Scholar 

  12. Akceylan, E., Bahadir, M., Yilmaz, M.: Removal efficiency of a calix[4]arene-based polymer for water-soluble carcinogenic direct azo dyes and aromatic amines. J. Hazard. Mater. 162, 960–966 (2009)

    Article  CAS  Google Scholar 

  13. Ozmen, E.Y., Sirit, A., Yilmaz, M.: A calix[4]arene oligomer and two beta-cyclodextrin polymers: synthesis and sorption studies of azo dyes. J. Macromol. Sci. A Pure Appl. Chem. 44, 167–173 (2007)

    Article  CAS  Google Scholar 

  14. Yilmaz, A., Yilmaz, E., Yilmaz, M., Bartsch, A.R.: Removal of azo dyes from aqueous solutions using calix[4]arene and cyclodextrin. Dyes Pigments 74, 54–59 (2007)

    Article  CAS  Google Scholar 

  15. Kamboh, M.A., Solangi, I.B., Sherazi, S.T.H., Memon, S.: A highly efficient calix[4]arene based resin for the removal of azo dyes. Desalination 268, 83–89 (2011)

    Article  CAS  Google Scholar 

  16. Kamboh, M.A., Solangi, I.B., Sherazi, S.T.H., Memon, S.: Synthesis and application of p-tert-butylcalix[8]arene immobilized material for the removal of azo dyes. J. Hazard. Mater. 186, 651–658 (2011)

    Article  CAS  Google Scholar 

  17. Chen, M., Shang, T., Fang, W., Diao, G.: Study on adsorption and desorption properties of the starch grafted p-tert-butyl-calix[n]arene for butyl Rhodamine B solution. J. Hazard. Mater. 185, 914–921 (2011)

    Article  CAS  Google Scholar 

  18. Kumar, P.R., Tabbasum, K., Kumar, H.V.: Selective recognition of cysteine in its free and protein-bound states by the Zn2+ complex of a triazole-based calix[4]arene conjugate. Chem. A Eur. J. 17, 13999–14003 (2011)

    Article  Google Scholar 

  19. Yang, F.F., Zhao, X., Guo, H.Y., Liu, C.H.: Syntheses and extraction properties of novel biscalixarene and thiacalix[4]arene polyaza derivatives. J. Incl. Phenom. Macrocycl. Chem. 61, 139–143 (2008)

    Article  CAS  Google Scholar 

  20. Tsubake, H., Furuta, H., Odani, A., Takeda, Y., Kudo, Y., Inoue, Y., Liu, Y., Sakamoto, H., Kimura, K.: In: Davies, J.E.D., Ripmeester, J.A. (eds.) Comprehensive Supramolecular Chemistry. Elsevier, Oxford, UK (1996)

  21. Connors, K.A.: Binding Constants. Wiley, New York (1987)

    Google Scholar 

  22. Beresnev, D.G., Itsikson, N.A., Chupakhin, O.N., Charushin, V.N., Kodess, M.I., Butakov, A.I., Rusinov, G.L., Morzherin, Y.Y., Konovalov, A.I., Antipin, I.S.: One-step heterylation at the upper rim of clix[4]arene with 1,2,4-triazin-5(2H)-ones, J. Org. Chem. 71, 8272–8275 (2006)

    Article  CAS  Google Scholar 

  23. Barton, O.G., Schmidtmann, M., Müller, A., Mattay, J.: Diaminotriazine substituted 1,3-alternate calix[4]arenes. New J. Chem. 28, 1335–1339 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (No. 20402002), Fujian Natural Science Foundation of China (No. 2011J01031), Project of Fujian provincial department of education (JA11044) and Program for Excellent young researchers in University of Fujian Province (JA10056) were greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fafu Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2154 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, F., Liu, W., Xie, J. et al. Novel deep-cavity calix[4]arene derivatives with large s-triazine conjugate systems: synthesis and complexation for dyes. J Incl Phenom Macrocycl Chem 76, 311–316 (2013). https://doi.org/10.1007/s10847-012-0200-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0200-2

Keywords

Navigation