Skip to main content
Log in

Cucurbit[n]uril-based host–guest-metal ion chemistry: an emerging branch in cucurbit[n]uril chemistry

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Cucurbit[n]urils (Q[n]s), a relatively new class of macrocyclic hosts with a rigid hydrophobic cavity and two identical carbonyl-fringed portals, have attracted much attention since the first member of the Q[n]-family, cucurbit[6]uril (Q[6]), was structurally identified in 1981 by Mock and co-workers. The interactions of the rigid cavities and negative portals of Q[n]s have resulted in the development of two almost mutually exclusive areas of study, namely Q[n]-based host–guest chemistry and Q[n]-based coordination chemistry. However, researches has revealed that Q[n]-based host–guest inclusion interactions may be influenced by metal ion coordination at the Q[n] portals, and in turn, coordination of metal ions at the Q[n] portals could be promoted by the formation of Q[n]-based inclusion host–guest complexes. Thus, this review provides an overview of related advances and achievements involving such a combination of Q[n]-based host–guest chemistry and Q[n]-based coordination chemistry, which could become an emerging branch, that is, Q[n]-based host–guest-metal ion chemistry. In particular, it could be useful in the treatment of wastewater, kinetic studies, drug delivery, the construction of novel supramolecular frameworks, metal-catalyzed reactions, recognition or response to metal cations, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cong, H., Ni, X.L., Xiao, X., Huang, Y., Zhu, Q.J., Xue, S.F., Tao, Z., Lindoy, L.F., Wei, G.: Synthesis and separation of cucurbit[n]urils and their derivatives. Org. Biomol. Chem. 14, 4335–4364 (2016)

    Article  CAS  Google Scholar 

  2. Lee, J.W., Samal, S., Selvapalam, N., Kim, H.J., Kim, K.: Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2003)

    Article  CAS  Google Scholar 

  3. Kim, K.: Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev. 31, 96–107 (2002)

    Article  CAS  Google Scholar 

  4. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)

    Article  CAS  Google Scholar 

  5. Kim, K., Selvapalam, N., Ko, Y.H., Park, K.M., Kim, D., Kim, J.: Functionalized cucurbiturils and their applications. Chem. Soc. Rev. 36, 267–279 (2007)

    Article  CAS  Google Scholar 

  6. Isaacs, L.: Cucurbit[n]urils: from mechanism to structure and function. Chem. Commun. (2009). doi:10.1039/B814897J

    Google Scholar 

  7. Dsouza, R.N., Pischel, U., Nau, W.M.: Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem. Rev. 111, 7941–7980 (2011)

    Article  CAS  Google Scholar 

  8. Pemberton, B.C., Raghunathan, R., Volla, S., Sivaguru, J.: From containers to catalysts: supramolecular catalysis within cucurbiturils. Chem. Eur. J. 18, 12178–12190 (2012)

    Article  CAS  Google Scholar 

  9. Masson, E., Ling, X.X., Joseph, R., Kyeremeh-Mensah, L., Lu, X.Y.: Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213–1247 (2012)

    Article  CAS  Google Scholar 

  10. Liu, Y.L., Yang, H., Wang, Z.Q., Zhang, X.: Cucurbit[8]uril-based supramolecular polymers. Chem. Asian J. 8, 1626–1632 (2013)

    Article  CAS  Google Scholar 

  11. Sindelar, V., Silvi, S., Parker, S.E., Sobransingh, D., Kaifer, A.E.: Proton and electron transfer control of the position of cucurbit[n]uril wheels in pseudorotaxanes. Adv. Funct. Mater. 17, 694–701 (2007)

    Article  CAS  Google Scholar 

  12. Wang, W., Kaifer, A.E.: Cucurbituril and cyclodextrin complexes of dendrimers. Adv. Polym. Sci. 222, 205–235 (2009)

    CAS  Google Scholar 

  13. Gadde, S., Batchelor, E.K., Kaifer, A.E.: Electrochemistry of redox active centres encapsulated by non-covalent methods. Aust. J. Chem. 63, 184–194 (2010)

    Article  CAS  Google Scholar 

  14. Gadde, S., Kaifer, A.E.: Cucurbituril complexes of redox active guests. Cur. Org. Chem. 15, 27–38 (2011)

    Article  CAS  Google Scholar 

  15. Mandadapu, V., Day, A.I., Ghanem, A.: Cucurbituril: chiral applications. Chirality 26, 712–723 (2014)

    Article  CAS  Google Scholar 

  16. Montes-Garcia, V., Perez-Juste, J., Pastoriza-Santos, I., Liz-Marzan, L.M.: Metal nanoparticles and supramolecular macrocycles: a tale of synergy. Chem. Eur. J. 20, 10874–10883 (2014)

    Article  CAS  Google Scholar 

  17. Isaacs, L.: Stimuli responsive systems constructed using cucurbit[n]uril-type molecular containers. Acc. Chem. Res. 47, 2052–2062 (2014)

    Article  CAS  Google Scholar 

  18. Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015)

    Article  CAS  Google Scholar 

  19. Ma, X., Zhao, Y.L.: Biomedical Applications of supramolecular systems based on host–guest interactions. Chem. Rev. 115, 7794–7839 (2015)

    Article  CAS  Google Scholar 

  20. Hou, X.S., Ke, C.F., Stoddart, J.F.: Cooperative capture synthesis: yet another playground for copper-free click chemistry. Chem. Soc. Rev. 45, 3766–3780 (2016)

    Article  CAS  Google Scholar 

  21. Tian, J., Chen, L., Zhang, D.W., Liu, Y., Li, Z.T.: Supramolecular organic frameworks: engineering periodicity in water through host–guest chemistry. Chem. Commun. 52, 6351–6362 (2016)

    Article  CAS  Google Scholar 

  22. Liu, J., Lan, Y., Yu, Z.Y., Tan, C.S.Y., Parker, R.M., Abell, C., Scherman, O.A.: Cucurbit[n]uril-based microcapsules self-assembled within microfluidic droplets: a versatile approach for supramolecular architectures and materials. Acc. Chem. Res. 50, 208–217 (2017)

    Article  CAS  Google Scholar 

  23. Sayed, M., Pal, H.: Supramolecularly assisted modulations in chromophoric properties and their possible applications: an overview. J. Mater. Chem. C. 4, 2685–2706 (2016)

    Article  CAS  Google Scholar 

  24. Tian, J., Zhang, L., Wang, H., Zhang, D.W., Li, Z.T.: Supramolecular polymers and networks driven by cucurbit[8]uril-guest pair encapsulation in water. Supramol. Chem. 28, 769–783 (2016)

    Article  CAS  Google Scholar 

  25. Sokolov, M.N., Dybtsev, D.N., Fedin, V.P.: Supramolecular compounds of cucurbituril with molybdenum and tungsten chalcogenide cluster aqua complexes. Russ. Chem. Bull. Int. Ed. 52, 1041–1060 (2003)

    Article  CAS  Google Scholar 

  26. Gerasko, O.A., Sokolov, M.N., Fedin, V.P.: Mono- and polynuclear aqua complexes and cucurbit[6]uril: Versatile building blocks for supramolecular chemistry. Pure Appl. Chem. 76, 1633–1646 (2004)

    Article  CAS  Google Scholar 

  27. Fedin, V.P.: New lines of research in chemistry of chalcogenide complexes: from clusters to supramolecular compounds. Russ. J. Coordin. Chem. 30, 151–158 (2004)

    Article  CAS  Google Scholar 

  28. Lü, J., Lin, J.X., Cao, M.N., Cao, R.: Cucurbituril: a promising organic building block for the design of coordination compounds and beyond. Coord. Chem. Rev. 257, 1334–1356 (2013)

    Article  Google Scholar 

  29. Ni, X.L., Xiao, X., Cong, H., Liang, L.L., Chen, K., Cheng, X.J., Ji, N.N., Zhu, Q.J., Xue, S.F., Tao, Z.: Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. Chem. Soc. Rev. 42, 9480–9508 (2013)

    Article  CAS  Google Scholar 

  30. Ni, X.L., Xue, S.F., Tao, Z., Zhu, Q.J., Lindoy, L.F., Wei, G.: Advances in the lanthanide metallosupramolecular chemistry of the cucurbit[n]urils. Coord. Chem. Rev. 287, 89–113 (2015)

    Article  CAS  Google Scholar 

  31. Behrend, R.; Meyer, E.; Rusche, F.: Mittheilungen aus dem organixch-chemixchen Laboratorium der Technischen Hochxcbule zu Hannover. Liebigs Ann. Chem. 339, 1–37 (1905)

    Article  Google Scholar 

  32. Freeman, W.A., Mock, W.L., Shih, N.Y.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981)

    Article  CAS  Google Scholar 

  33. Wu, Y., Xu, L., Shen, Y., Wang, Y., Zou, L., Wang, Q., Jiang, X., Liu, J., Tian, H.: The smallest cucurbituril analogue with high affinity for Ag+. Chem Common. (2017). doi:10.1039/C7CC01729D

    Google Scholar 

  34. Li, Q., Qiu, S.C., Zhang, J., Chen, K., Huang, Y., Xiao, X., Zhang, Y., Li, F., Zhang, Y.Q., Xue, S.F., Zhu, Q.J., Tao, Z., Lindoy, L.F., Wei, G.: Twisted cucurbit[n]urils. Org. Lett. 18, 4020–4023 (2016)

    Article  CAS  Google Scholar 

  35. Zhao, W.X., Wang, C.Z., Chen, L.X., Cong, H., Xiao, X., Zhang, Y.Q., Xue, S.F., Huang, Y., Tao, Z., Zhu, Q.J.: A hemimethyl-substituted cucurbit[7]uril derived from 3α-methylglycoluril. Org. Lett. 17, 5072–5075 (2015)

    Article  CAS  Google Scholar 

  36. Jon, S.Y., Selvapalam, N., Oh, D.H., Kang, J.K., Kim, S.Y., Jeon, Y.J., Lee, J.W., Kim, K.: Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. J. Am. Chem. Soc. 125, 10186–10187 (2003)

    Article  CAS  Google Scholar 

  37. Zhao, N., Lloyd, G.O., Scherman, O.A.: Monofunctionalised cucurbit[6]uril synthesis using imidazolium host–guest complexation. Chem. Commun. 48, 3070–3072 (2012)

    Article  CAS  Google Scholar 

  38. Ayhan, M.M., Karoui, H., Hardy, M., Rockenbauer, A., Charles, L., Rosas, R., Udachin, K., Tordo, P., Bardelang, D., Ouari, O.: Comprehensive synthesis of monohydroxy-cucurbit[n]urils (n = 5, 6, 7, 8): high purity and high conversions. J. Am. Chem. Soc. 137, 10238–10245 (2015)

    Article  CAS  Google Scholar 

  39. Ayhan, M.M., Karoui, H., Hardy, M., Rockenbauer, A., Charles, L., Rosas, R., Udachin, K., Tordo, P., Bardelang, D., Ouari, O.: Comprehensive synthesis of monohydroxy-cucurbit[n]urils (n = 5, 6, 7, 8): high purity and high conversions. J. Am. Chem. Soc. 138, 2060 (2016)

    Article  CAS  Google Scholar 

  40. Huang, W.H., Zavalij, P.Y., Isaacs, L.: Folding of long-chain alkanediammonium ions promoted by a cucurbituril derivative. Org. Lett. 10, 2577–2580 (2008)

    Article  CAS  Google Scholar 

  41. Lucas, D., Minami, T., Iannuzzi, G., Cao, L., Wittenberg, J.B., Anzenbacher, Jr.P., Isaacs, L.: Templated synthesis of glycoluril hexamer and monofunctionalized cucurbit[6]uril derivatives. J. Am. Chem. Soc. 133, 17966–17976 (2011)

    Article  CAS  Google Scholar 

  42. Vinciguerra, B., Cao, L., Cannon, J.R., Zavalij, P.Y., Fenselau, C., Isaacs, L.: Synthesis and self-assembly processes of monofunctionalized cucurbit[7]uril. J. Am. Chem. Soc. 134, 13133–13140 (2012)

    Article  CAS  Google Scholar 

  43. Cao, L., Isaacs, L.: Daisy chain assembly formed from a cucurbit[6]uril derivative. Org. Lett. 14, 3072–3075 (2012)

    Article  CAS  Google Scholar 

  44. Cao, L., Hettiarachchi, G., Briken, V., Isaacs, L.: Cucurbit[7]uril containers for targeted delivery of oxaliplatin to cancer cells. Angew. Chem. Int. Ed. 52, 12033–12037 (2013)

    Article  CAS  Google Scholar 

  45. Vinciguerra B., Zavalij P.Y., Isaacs L.: Synthesis and recognition properties of cucurbit[8]uril derivatives. Org. Lett. 17, 5068–5071 (2015)

    Article  CAS  Google Scholar 

  46. Bockus, A.T., Smith, L.C., Grice, A.G., Ali, O.A., Young, C.C., Mobley, W., Leek, A., Roberts, J.L., Vinciguerra, B., Isaacs, L.: Cucurbit[7]uril-tetramethylrhodamine conjugate for direct sensing and cellular imaging. J. Am. Chem. Soc. 138, 16549–16552 (2016)

    Article  CAS  Google Scholar 

  47. Liang, L.L., Ni, X.L., Zhao, Y., Chen, K., Xiao, X., Zhang, Y.Q., Redshaw, C., Zhu, Q.J., Xue, S.F., Tao, Z.: Construction of Cucurbit[7]uril Based Tubular Nanochannels Incorporating Associated [CdCl4]2− and Lanthanide Ions. Inorg. Chem. 52, 1909–1915 (2013)

    Article  CAS  Google Scholar 

  48. Zhao, Y., Liang, L.L., Chen, K., Ji, N.N., Cheng, X.J., Xiao, X., Zhang, Y.Q., Xue, S.F., Zhu, Q.J., Dong, N., Tao, Z.: [CdCl4]2– anion-induced coordination of alkaline earth metal ions to cucurbit[7]uril, corresponding supramolecular self-assemblies and potential application. Dalton Trans. 43, 929–932 (2014)

    Article  CAS  Google Scholar 

  49. Cong, H., Zhao, Y., Liang, L.L., Chen, K., Chen, X.J., Xiao, X., Zhang, Y.Q., Zhu, Q.J., Xue, S.F., Tao, Z.: Cucurbituril-based supramolecular self-assemblies formed in the presence of alkali metal and cadmium ions. Eur. J. Inorg. Chem. (2014). doi:10.1002/ejic.201400004

    Google Scholar 

  50. Li, Q., Qiu, S.C., Zhang, Y.Q., Xue, S.F., Tao, Z., Prior, T.J., Redshaw, C., Zhu, Q.J., Xiao, X.: Supramolecular assemblies constructed from inverted cucurbit[7]uril and lanthanide cations: synthesis, structure and sorption properties. RSC Adv. 6, 77805–77810 (2016)

    Article  CAS  Google Scholar 

  51. Qiu, S.C., Li, Q., Chen, K., Zhang, Y.Q., Zhu, Q.J., Tao, Z.: Absorption properties of an inverted cucurbit[7]uril-based porous coordination polymer induced by [ZnCl4]2− anions. Inorg. Chem. Commun. 72, 50–53 (2016)

    Article  CAS  Google Scholar 

  52. Liang, L.L., Zhao, Y., Chen, K., Xiao, X., Clegg, J.K., Zhang, Y.Q., Tao, Z., Xue, S.F., Zhu, Q.J., Wei G.: One-dimensional coordination polymers of lanthanide cations to cucurbit[7]uril built using a range of tetrachloride transition-metal dianion structure inducers. Polymers 5, 418–430 (2013)

    Article  Google Scholar 

  53. Chen, K., Cong, H., Xiao, X., Zhang, Y.Q., Xue, S.F., Tao, Z., Zhu, Q.J., Wei, G.: Hydroquinone-induced framework based on direct coordination of rubidium ions to cucurbit[7]uril. CrystEngComm 13, 5105–5110 (2011)

    Article  CAS  Google Scholar 

  54. Chen, K., Liang, L.L., Cong, H., Xiao, X., Zhang, Y.Q., Xue, S.F., Zhu, Q.J., Tao, Z.: p-Hydroxybenzoic acid-induced formation of a novel framework based on direct coordination of caesium ions to cucurbit[8]uril. CrystEngComm 14, 3862–3864 (2012)

    Article  CAS  Google Scholar 

  55. Ni, X.L., Xiao, X., Cong, H., Zhu, Q.J., Xue, S.F., Tao, Z.: Self-assemblies based on the “outer-surface interactions” of cucurbit[n]urils: new opportunities for supramolecular architectures and materials. Acc. Chem. Res. 47, 1386–1395 (2014)

    Article  CAS  Google Scholar 

  56. Buschmann, H.J.: Novel host–guest mechanism: precipitation of many organic molecules from aqueous solution. Festkoerperphys Werkstofforsch 44, 114–122 (1990)

    CAS  Google Scholar 

  57. Hoffmann, R., Knoche, W., Fenn, C.: Host–guest complexes of cucurbituril with 4-methylbenzylammonium ion, alkali-metal cations and NH4 +. J. Chem. Soc. Faraday Trans. 90, 1507–1511 (1994)

    Article  CAS  Google Scholar 

  58. Buschmann, H.J., Gardberg, A., Rader, D., Schollmeyer, E.: The decolorization of textile wastewater by formation of dye inclusion compounds, part 5, influence of textile auxiliaries. Textilveredlung 28, 179–182 (1993)

    CAS  Google Scholar 

  59. Buschmann, H.J., Schollmeyer, E.: Decreasing the concentration of heavy metals in wastewater from textile finishing operations. Textilveredlung 28, 182–184 (1993)

    CAS  Google Scholar 

  60. Buschmann, H.J.: Selective removal of dyes and heavy metals from wastewaters of the textile industry. Vom Wasser. 84, 263–269 (1995)

    CAS  Google Scholar 

  61. Buschmann, H.J.: Cucurbituril complexes with dyes and other organic molecules. Biol. Abwasserreinig 9, 101–129 (1997)

    CAS  Google Scholar 

  62. Karcher, S., Kornmueller, A., Jekel, M.: Removal of reactive dyes with the cage compound cucurbituril. Biol. Abwasserreinig 9, 131–152 (1997)

    CAS  Google Scholar 

  63. Karcher, S., Kornmüller, A., Jekel M.: Effects of alkali and alkaline-earth cations on the removal of reactive dyes with cucurbituril. Acta Hydrochim. Hydrobiol. 27, 38–42 (1999)

    Article  CAS  Google Scholar 

  64. Karcher, S., Kornmüller, A., Jekel M.: Removal of reactive dyes by sorption/complexation with cucurbituril. Wat. Sci. Tech. 40, 425–433 (1999)

    CAS  Google Scholar 

  65. Tang, H., Fuentealba, D., Ko, Y.H., Selvapalam, N., Kim, K., Bohne, C.: Guest binding dynamics with cucurbit[7]uril in the presence of cations. J. Am. Chem. Soc. 133, 20623–20633 (2011)

    Article  CAS  Google Scholar 

  66. Jeon, Y.M., Kim, J., Whang, D., Kim, K.: Molecular container assembly capable of controlling binding and release of its guest molecules: reversible encapsulation of organic molecules in sodium ion complexed cucurbituril. J. Am. Chem. Soc. 118, 9790–9791 (1996)

    Article  CAS  Google Scholar 

  67. Dongmok Whang, Jungseok Heo, Joo Hyun Park, Kimoon Kim: A Molecular Bowl with Metal Ion as Bottom: reversible Inclusion of Organic Molecules in Cesium Ion Complexed Cucurbituril. Angew. Chem. Int. Ed. 37, 78–80 (1998)

    Article  CAS  Google Scholar 

  68. Choudhury, S.D., Mohanty, J., Pal, H., Bhasikuttan, A.C.: Cooperative metal ion binding to a cucurbit[7]uril-thioflavin T complex: demonstration of a stimulus-responsive fluorescent supramolecular capsule. J. Am. Chem. Soc. 132, 1395–1401 (2010)

    Article  CAS  Google Scholar 

  69. Nau, W.M.: Under control. Nat. Chem. 2, 248–250 (2010)

    Article  CAS  Google Scholar 

  70. Fedin, V.P., Virovets, A.V., Sokolov, M.N., Dybtsev, D.N., Gerasko, O.A., Clegg, W.: Supramolecular assemblies based on cucurbituril adducts of hydrogen-bonded molybdenum and tungsten incomplete cuboidal aqua complexes. Inorg. Chem. 39, 2227–2230 (2000)

    Article  CAS  Google Scholar 

  71. Dybtsev, D.N., Gerasko, O.A., Virovets, A.V., Sokolov, M.N., Fedin, V.P.: Unexpected guest-controlled formation of two-layered structure in supramolecular adduct of [W3S4(H2O)9]4+ and cucurbituril. Inorg. Chem. Commun. 3, 345–349 (2000)

    Article  CAS  Google Scholar 

  72. Liu, J.X., Lin, R.L., Long, L.S., Huang, R.B., Zheng, L.S.: A novel inclusion complex form between Q[10] host and Q[5] guest stabilized by potassium ion coordination. Inorg. Chem. Commun. 11, 1085–1087 (2008)

    Article  CAS  Google Scholar 

  73. Thuery, P.: Supramolecular assemblies built from lanthanide ammoniocarboxylates and cucurbit[6]uril. CrystEngComm 14, 8128–8136 (2012)

    Article  CAS  Google Scholar 

  74. Blanco, E., Quintana, C., Hernández, P.: An electrochemical study of cucurbit[6]uril–cadmium(II) interactions and the effect of electrolyte cations and guest molecules. Anal. Lett. 48, 783–795 (2015)

    Article  CAS  Google Scholar 

  75. Thuéry, P.: Second-sphere complexation of thorium(IV) by cucurbit[6]uril with included perrhenate counterions–crystal structure and hirshfeld surface analysis. Eur. J. Inorg. Chem. 12, 2037–2040 (2015)

    Article  Google Scholar 

  76. Mu, L., Yang, X.B., Xue, S.F., Zhu, Q.J., Tao, Z., Zeng, X.: Cucurbit[n]urils induced room temperature phosphorescence of quinoline derivatives. Anal. Chim. Acta 597, 90–96 (2007)

    Article  CAS  Google Scholar 

  77. Lu, X., Masson, E.: Silver-promoted desilylation catalyzed by ortho- and allosteric cucurbiturils. Org. Lett. 12, 2310–2313 (2010)

    Article  CAS  Google Scholar 

  78. Koner, A.L., Márquez, C., Dickman, M.H., Nau, W.M.: Transition-metal-promoted chemoselective photoreactions at the cucurbituril rim. Angew. Chem. Int. Ed. 50, 545–548 (2011)

    Article  CAS  Google Scholar 

  79. Zhu, J.H., Li, C.Y., Liu, S.P., Liu, Z.F., Li, Y.F., Hu, X.L.: Calcium-stimulus-responsive cucurbit[7]uril–thioflavin Tsupramolecular nanocapsule for fluoride sensing and logic operation. Sen. Actuat. B 198, 255–259 (2014)

    Article  CAS  Google Scholar 

  80. Dutta Choudhury, S., Bhasikuttan, A.C., Pal, H., Mohanty, J.: Surfactant-induced aggregation patterns of thiazole orange: A photophysical study. Langmuir. 27, 12312–12321 (2011)

    Article  CAS  Google Scholar 

  81. Mooi, S.M., Heyne, B.: Size does matter: How to control organization of organic dyes in qqueous environment using specific ion effects. Langmuir. 28, 16524–16530 (2012)

    Article  CAS  Google Scholar 

  82. Shinde, M.N., Dutta Choudhury, S., Barooah, N., Pal, H., Bhasikuttan, A.C., Mohanty, J.: Metal-ion-mediated assemblies of thiazole orange with cucurbit[7]uril: a photophysical study. J. Phys. Chem. B. 119, 3815–3823 (2015)

    Article  CAS  Google Scholar 

  83. Aliaga, M.E., Garcia-Rio, L., Pessêgo, M., Montecinos, R., Fuentealba, D., Uribe, I., Martín-Pastor, M., García-Beltrán, O.: Host–guest interaction of coumarin-derivative dyes and cucurbit[7]uril: leading to the formation of supramolecular ternary complexes with mercuric ions. New J. Chem. 39, 3084–3092 (2015)

    Article  CAS  Google Scholar 

  84. Geng, Q.X., Cong, H., Tao, Z., Lindoy, L.F., Wei, G.: Cucurbit[7]uril-improved recognition by a fluorescent sensor for cadmium and zinc cations. Supramol. Chem. 28, 784–791 (2016)

    Article  CAS  Google Scholar 

  85. Geng, Q.X., Wang, F., Cong, H., Tao, Z., Wei, G.: Recognition of silver cations by a cucurbit[8]urilinduced supramolecular crown ether. Org. Biomol. Chem. 14, 2556–2562 (2016)

    Article  CAS  Google Scholar 

  86. Pandey, S., Soni, V.K., Choudhary, G., Sharma, P.R., Sharma, R.K.: Understanding behaviour of vitamin-C guest binding with the cucurbit[6]uril host. Supramol. Chem. 29, 387–394 (2017)

    Article  CAS  Google Scholar 

  87. Zhang, J., Tang, Q., Gao, Z.Z., Qiu, S.C., Huang, Y., Tao, Z.: Supramolecular assemblies mediated by metal ions in aqueous solution and their analysis applications. Chem. Eur. J. doi:10.1002/chem.201700478

  88. Li, W., Kuehne, N.W., Dallin, E., Gordon, R., Hof, F.: A supramolecular indicator displacement assay for acetyl amantadine, a proxy biomarker for spermidine/spermine N1-acetyltransferase (SSAT) activity. Can. J. Chem. 94, 969–975 (2016)

    Article  CAS  Google Scholar 

  89. Manna, A., Chakravorti, S.: Switching of emission of a styryl dye in cucurbit[7]uril: a comprehensive experimental and theoretical study. Spectrochim. Acta A 140, 241–247 (2015)

    Article  CAS  Google Scholar 

  90. Banik, D., Kuchlyan, J., Roy, A., Kundu, N., Sarkar, N.: Stimuli-sensitive breathing of cucurbit[7]uril cavity: monitoring through the environment responsive fluorescence of 1′-hydroxy-2′-acetonaphthone (HAN). J. Phys. Chem. B 119, 2310–2322 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the National Natural Science Foundation of China (Nos. 21601090 and 51663005), the Graduate Student’s Fund for innovation of Guizhou University (No. 2016011) and Natural Science Foundation of Jiangsu, China (No. BK20160943).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Chen or Zhu Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y.Q., Chen, K., Hua, Z.Y. et al. Cucurbit[n]uril-based host–guest-metal ion chemistry: an emerging branch in cucurbit[n]uril chemistry. J Incl Phenom Macrocycl Chem 89, 1–14 (2017). https://doi.org/10.1007/s10847-017-0733-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0733-5

Keywords

Navigation