Skip to main content
Log in

3D molecular fragment descriptors for structure–property modeling: predicting the free energies for the complexation between antipodal guests and β-cyclodextrins

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

We report new 3D fragment descriptors to model parameters and properties of stereoisomeric molecules and conformers. New 3D fragment descriptors have been applied to discriminate between stereoisomers in predictive QSPR modeling of the standard free energy (∆G°) for the 1:1 inclusion complexation of 76 chiral guests with β-cyclodextrin (β-CD) and 40 chiral guests with 6-amino-6-deoxy-β-cyclodextrin (am-β-CD) in water at 298 K. The in-house software, mfSpace (Molecular Fragments Space), was used for QSPR modeling, generation and coding of the 3D fragment descriptors. The program implements the Singular Value Decomposition for Multiple Linear Regression analysis as machine learning method. We used ensemble modeling techniques which include the generation of many individual models, the selection of the most relevant ones and followed by their joint application to test compounds, i.e., applying a consensus model for average predictions. The models based on 2D and 3D fragment descriptors provide the best predictions in external fivefold cross-validation: root mean squared error RMSE = 1.1 kJ/mol and determination coefficient \(R_{{det}}^{2}\) = 0.918 (β-CD), RMSE = 0.89 kJ/mol and \(R_{{det}}^{2}\) = 0.910 (am-β-CD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Douhal, A. (ed.): Cyclodextrin Materials. Photochemistry, Photophysics and Photobiology. Elsevier, Amsterdam (2006)

    Google Scholar 

  2. Dodziuk, H. (ed.): Cyclodextrins and Their Complexes. Chemistry, Analytical Methods, Applications. Wiley-VCH, Weinheim (2006)

    Google Scholar 

  3. Jin, Z.-Y.: Cyclodextrin Chemistry. Preparation and Application. World Scientific, Singapore (2013)

    Book  Google Scholar 

  4. Klein, C.T., Polheim, D., Viernstein, H., Wolschann, P.: A method for predicting the free energies of complexation between β-cyclodextrin and guest molecules cyclodextrin chemistry. preparation and application. J. Inclusion Phenom. Macrocycl. Chem. 36, 409–423 (2000)

    Article  CAS  Google Scholar 

  5. Solov’ev, V.P., Tsivadze, A.Y.: Supramolecular complexes: determination of stability constants on the basis of various experimental methods. Prot. Metals Phys. Chem. Surf. 51(1), 1–35 (2015)

    Article  Google Scholar 

  6. Matsui, Y., Nishioka, T., Fujita, T.: Biomimetic and Bioorganic Chemistry, pp. 61–89. Springer, Berlin (1985)

    Book  Google Scholar 

  7. Liu, L., Guo, Q.-X.: Wavelet neural network and its application to the inclusion of β-cyclodextrin with benzene derivatives. J. Chem. Inf. Comput. Sci. 39(1), 133–138 (1999)

    Article  CAS  Google Scholar 

  8. Suzuki, T., Ishida, M., Fabian, W.M.F.: Classical QSAR and comparative molecular field analyses of the host-guest interaction of organic molecules with cyclodextrins. J. Comput. Aided Mol. Des. 14, 669–678 (2000)

    Article  CAS  Google Scholar 

  9. Suzuki, T.: A nonlinear group contribution method for predicting the free energies of inclusion complexation of organic molecules with a- and β-cyclodextrins. J. Chem. Inf. Comput. Sci. 41(5), 1266–1273 (2001)

    Article  CAS  Google Scholar 

  10. Bodor, N., Buchwald, P.: Theoretical insights into the formation, structure, and energetics of some cyclodextrin complexes. J. Inclusion Phenom. Macrocycl. Chem. 44, 9–14 (2002)

    Article  CAS  Google Scholar 

  11. Faucci, M.T., Melani, F., Mura, P.: Computer-aided molecular modeling techniques for predicting the stability of drug–cyclodextrin inclusion complexes in aqueous solutions. Chem. Phys. Lett. 358, 383–390 (2002)

    Article  CAS  Google Scholar 

  12. Katritzky, A.R., Fara, D.C., Yang, H., Karelson, M., Suzuki, T., Solov’ev, V.P., Varnek, A.: Quantitative structure-property relationship modeling of β-cyclodextrin complexation free energies. J. Chem. Inf. Comp. Sci. 44(2), 529–541 (2004)

    Article  CAS  Google Scholar 

  13. Steffen, A., Apostolakis, J.: On the ease of predicting the thermodynamic properties of β-cyclodextrin inclusion complexes. Chem. Cent. J. 1(1), 29–39 (2007)

    Article  Google Scholar 

  14. Chari, R., Qureshi, F., Moschera, J., Tarantino, R., Kalonia, D.: Development of improved empirical models for estimating the binding constant of a β-cyclodextrin Inclusion complex. Pharm. Res. 26(1), 161–171 (2009)

    Article  CAS  Google Scholar 

  15. Prakasvudhisarn, C., Wolschann, P., Lawtrakul, L.: Predicting complexation thermodynamic parameters of β-cyclodextrin with chiral guests by using swarm intelligence and support vector machines. Int. J. Mol. Sci. 10, 2107–2121 (2009)

    Article  CAS  Google Scholar 

  16. Perez-Garrido, A., Helguera, A.M., Cordeiro, M.N.D.S., Escudero, A.G.: QSPR modelling with the topological substructural molecular design approach: β-cyclodextrin complexation. J. Pharm. Sci. 98(12), 4557–4576 (2009)

    Article  CAS  Google Scholar 

  17. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97(5), 1325–1357 (1997)

    Article  CAS  Google Scholar 

  18. Rekharsky, M., Inoue, Y.: Chiral recognition thermodynamics of β-cyclodextrin: the thermodynamic origin of enantioselectivity and the enthalpy-entropy compensation effect. J. Am. Chem. Soc. 122(18), 4418–4435 (2000)

    Article  CAS  Google Scholar 

  19. Rekharsky, M.V., Inoue, Y.: Complexation and chiral recognition thermodynamics of 6-Amino-6-deoxy-β-cyclodextrin with anionic, cationic, and neutral chiral guests: counterbalance between van der Waals and Coulombic interactions. J. Am. Chem. Soc. 124(5), 813–826 (2002)

    Article  CAS  Google Scholar 

  20. Rekharsky, M.V., Goldberg, R.N., Schwarz, F.P., Tewari, Y.B., Ross, P.D., Yamashoji, Y., Inoue, Y.: Thermodynamic and nuclear magnetic resonance study of the interactions of a- and β-cyclodextrin with model substances: phenethylamine, ephedrines, and related substances. J. Am. Chem. Soc. 117(34), 8830–8840 (1995)

    Article  CAS  Google Scholar 

  21. Liu, Y., Yang, E.-C., Yang, Y.-W., Zhang, H.-Y., Fan, Z., Ding, F., Cao, R.: Thermodynamics of the molecular and chiral recognition of cycloalkanols and camphor by modified β-cyclodextrins possessing simple aromatic tethers. J. Org. Chem. 69(1), 173–180 (2004)

    Article  CAS  Google Scholar 

  22. Liu, L., Li, W.-G., Guo, Q.-X.: Association constant prediction for the inclusion of α-cyclodextrin with benzene derivatives by an artificial neural network. J. Inclusion Phenom. Macrocycl. Chem. 34, 291–298 (1999)

    Article  Google Scholar 

  23. Loukas, Y.L.: Quantitative structure-binding relationships (QSBR) and artificial neural networks: improved predictions in drug: cyclodextrin inclusion complexes. Int. J. Pharm. 226, 207–211 (2001)

    Article  CAS  Google Scholar 

  24. Estrada, E., Perdomo-Lopez, I., Torres-Labandeira, J.J.: Combination of 2D-, 3D-connectivity and quantum chemical descriptors in QSPR. Complexation of a- and β-cyclodextrin with benzene derivatives. J. Chem. Inf. Comput. Sci. 41(6), 1561–1568 (2001)

    Article  CAS  Google Scholar 

  25. Jimenez, V., Alderete, J.B.: The role of charge transfer interactions in the inclusion complexation of anionic guests with a-cyclodextrin. Tetrahedron 61, 5449–5456 (2005)

    Article  CAS  Google Scholar 

  26. Ghasemi, J.B., Salahinejad, M., Rofouei, M.K., Mousazadeh, M.H.: Docking and 3D-QSAR study of stability constants of benzene derivatives as environmental pollutants with a-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 73, 405–413 (2012)

    Article  CAS  Google Scholar 

  27. Klein, C.T., Polheim, D., Viernstein, H., Wolschann, P.: Predicting the free energies of complexation between cyclodextrins and guest molecules: linear versus nonlinear models. Pharm. Res. 17(3), 358–365 (2000)

    Article  CAS  Google Scholar 

  28. Buchwald, P.: Complexation thermodynamics of cyclodextrins in the framework of a molecular size-based model for nonassociative organic liquids that includes a modified hydration-shell hydrogen-bond model for water. J. Phys. Chem. B 106(27), 6864–6870 (2002)

    Article  CAS  Google Scholar 

  29. Ghasemi, J.B., Salahinejad, M., Rofouei, M.K.: An alignment independent 3D-QSAR study for predicting the stability constants of structurally diverse compounds with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 71, 195–206 (2011)

    Article  CAS  Google Scholar 

  30. Merzlikine, A., Abramov, Y.A., Kowsz, S.J., Thomas, V.H., Mano, T.: Development of machine learning models of β-cyclodextrin and sulfobutylether-β-cyclodextrin complexation free energies. Int. J. Pharm. 418, 207–216 (2011)

    Article  CAS  Google Scholar 

  31. Sang, P., Zou, J.-W., Dai, D.-M., Hu, G.-X., Jiang, Y.-J.: Prediction of the complexation of structurally diverse compounds with β-cyclodextrin using structural descriptors derived from electrostatic potentials on molecular surface and different chemometric methods. Chemom. Intell. Lab. Syst. 127, 166–176 (2013)

    Article  CAS  Google Scholar 

  32. Veselinović, A.M., Veselinović, J.B., Toropov, A.A., Toropova, A.P., Nikolić, G.M.: In silico prediction of the β-cyclodextrin complexation based on Monte Carlo method. Int. J. Pharm. 495(1), 404–409 (2015)

    Article  Google Scholar 

  33. Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH, Weinheim (2000)

    Book  Google Scholar 

  34. Varnek, A.: Fragment descriptors in structure-property modeling and virtual screening. In: Bajorath, J. (ed.) Chemoinformatics and Computational Chemical Biology, pp. 213–243. Springer, New York (2011)

    Google Scholar 

  35. Baskin, I., Varnek, A.: Fragment descriptors in SAR/QSAR/QSPR studies, molecular similarity analysis and in virtual screening. In: Varnek, A., Tropsha, A. (eds.) Chemoinformatics Approaches to Virtual Screening, pp. 1–43. RCS Publishing, Cambridge (2008)

    Google Scholar 

  36. Solov’ev, V.P., Varnek, A.A., Wipff, G.: Modeling of ion complexation and extraction using substructural molecular fragments. J. Chem. Inf. Comput. Sci. 40(3), 847–858 (2000)

    Article  Google Scholar 

  37. Varnek, A., Solov’ev, V.P.: “In Silico” design of potential anti-HIV actives using fragment descriptors. Comb. Chem. High Throughput Screen. 8(5), 403–416 (2005)

    Article  CAS  Google Scholar 

  38. Katritzky, A.R., Kuanar, M., Slavov, S., Dobchev, D.A., Fara, D.C., Karelson, M., Acree, W.E.J., Solov’ev, V.P., Varnek, A.: Correlation of blood–brain penetration using structural descriptors. Bioorg. Med. Chem. 14(14), 4888–4917 (2006)

    Article  CAS  Google Scholar 

  39. Varnek, A., Kireeva, N., Tetko, I.V., Baskin, I.I., Solov’ev, V.P.: Exhaustive QSPR studies of a large diverse set of ionic liquids: how accurately can we predict melting points? J. Chem. Inf. Model. 47(3), 1111–1122 (2007)

    Article  CAS  Google Scholar 

  40. Varnek, A., Solov’ev, V.: Quantitative structure-property relationships in solvent extraction and complexation of metals. In: Sengupta, A.K., Moyer, B.A. (eds.) Ion Exchange and Solvent Extraction, A Series of Advances, pp. 319–358. CRC Press, Taylor and Francis Group, Boca Raton (2009)

    Chapter  Google Scholar 

  41. Solov’ev, V., Oprisiu, I., Marcou, G., Varnek, A.: Quantitative structure–property relationship (QSPR) modeling of normal boiling point temperature and composition of binary azeotropes. Ind. Eng. Chem. Res. 50(24), 14162–14167 (2011)

    Article  Google Scholar 

  42. Solov’ev, V., Kireeva, N., Ovchinnikova, S., Tsivadze, A.: The complexation of metal ions with various organic ligands in water: prediction of stability constants by QSPR ensemble modelling. J. Incl. Phenom. Macrocycl. Chem. 83, 89–101 (2015)

    Article  Google Scholar 

  43. Glavatskikh, M., Madzhidov, T., Solov’ev, V., Marcou, G., Horvath, D., Graton, J., Le Questel, J.-Y., Varnek, A.: Predictive models for halogen-bond basicity of binding sites of polyfunctional molecules. Mol. Inf. 35(2), 70–80 (2016)

    Article  CAS  Google Scholar 

  44. Glavatskikh, M., Madzhidov, T., Solov’ev, V., Marcou, G., Horvath, D., Varnek, A.: Predictive models for the free energy of hydrogen bonded complexes with single and cooperative hydrogen bonds. Mol. Inf. 35(11–12), 629–638 (2016)

    Article  CAS  Google Scholar 

  45. Varnek, A., Fourches, D., Horvath, D., Klimchuk, O., Gaudin, C., Vayer, P., Solov’ev, V., Hoonakker, F., Tetko, I.V., Marcou, G.: ISIDA—Platform for virtual screening based on fragment and pharmacophoric descriptors. Curr. Comput. Aided Drug Des. 4(3), 191–198 (2008)

    Article  CAS  Google Scholar 

  46. Solov’ev, V., Sukhno, I., Buzko, V., Polushin, A., Marcou, G., Tsivadze, A., Varnek, A.: Stability constants of complexes of Zn2+, Cd2+, and Hg2+ with organic ligands: QSPR consensus modeling and design of new metal binders. J. Inclusion Phenom. Macrocycl. Chem. 72(3–4), 309–321 (2012)

    Article  Google Scholar 

  47. Muller, P.H., Neumann, P., Storm, R.: Tafeln der mathematischen Statistik. VEB Fachbuchverlag, Leipzip (1979)

  48. Solov’ev, V.P., Varnek, A.A.: EdChemS (Editor of Chemical Structures). http://vpsolovev.ru/programs/ (2008–2017). Accessed 18 Jan 2017

  49. Solov’ev, V.P., Varnek, A.A.: EdiSDF (Editor of Structure—Data Files). http://vpsolovev.ru/programs/ (2008–2017). Accessed 18 Jan 2017

  50. Varnek, A., Fourches, D., Hoonakker, F., Solov’ev, V.P.: Substructural fragments: an universal language to encode reactions, molecular and supramolecular structures. J. Comput. Aid. Mol. Des. 19(9–10), 693–703 (2005)

    Article  CAS  Google Scholar 

  51. HyperChem. http://www.hyper.com (2017). Accessed 18 Jan 2017

  52. Blondel, A., Karplus, M.: New formulation for derivatives of torsion angles and improper torsion angles in molecular mechanics: elimination of singularities. J. Comput. Chem. 17(9), 1132–1141 (1996)

    Article  CAS  Google Scholar 

  53. Mathematics. How do I calculate a dihedral angle given Cartesian coordinates? http://math.stackexchange.com/questions/47059/how-do-i-calculate-a-dihedral-angle-given-cartesian-coordinates (2016). Accessed 27 Aug 2016

  54. The Cambridge Structure Database. http://www.ccdc.cam.ac.uk (2016). Accessed 9 Sept 2016

  55. Ou, G.C., Li, Z.Z., Zhang, M., Yuan, X.Y.: Chiral resolution of L- and D-alanine and a racemic macrocyclic nickel(II) complex: synthesis and crystal structures. Transit. Met. Chem. 39, 135–140 (2014)

    Article  CAS  Google Scholar 

  56. Solov’ev, V.P., Kireeva, N., Tsivadze, A.Y., Varnek, A.: QSPR ensemble modelling of alkaline-earth metal complexation. J. Incl. Phenom. Macrocycl. Chem. 76(1–2), 159–171 (2013)

    Article  Google Scholar 

  57. Zhokhova, N.I., Baskin, I.I., Palyulin, V.A., Zefirov, A.N., Zefirov, N.S.: Fragmental descriptors with labeled atoms and their application in QSAR/QSPR studies. Dokl. Chem. 417(2), 282–284 (2007)

    Article  CAS  Google Scholar 

  58. Kubinyi, H.: Variable selection in QSAR studies. II. A highly efficient combination of systematic search and evolution. Quant. Struct. Act. Relat. 13(4), 393–401 (1994)

    CAS  Google Scholar 

  59. Ali, M., Pant, M., Abraham, A.: A simplex differential evolution algorithm: development and applications. Trans. Inst. Meas. Control. 34(6), 691–704 (2011)

    Article  Google Scholar 

  60. Mohamed, A.W., Sabry, H.Z., Khorshid, M.: An alternative differential evolution algorithm for global optimization. Adv. Res. 3, 149–165 (2012)

    Article  Google Scholar 

  61. Wang, Y., Chen, X., Gui, W., Yang, C., Caccetta, L., Xu, H.: A hybrid multiobjective differential evolution algorithm and its application to the optimization of grinding and classification. J. Appl. Math. 2013, 1–15 (2013)

    Google Scholar 

  62. Dalby, A., Nourse, J.G., Hounshell, W.D., Gushurst, A.K.I., Grier, D.L., Leland, B.A., Laufer, J.: Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. J. Chem. Inf. Comput. Sci. 32(3), 244–255 (1992)

    Article  CAS  Google Scholar 

  63. Hedderich, J., Sachs, L.: Angewandte Statistik. Methodensammlung mit R. Springer, Berlin (2016)

    Google Scholar 

Download references

Acknowledgements

A.S. gratefully acknowledges Dr. Rimma Akhmetsafina and Dr. Rodriges Zalipynis R.A. for providing useful suggestions for improving software quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Solov’ev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10847_2017_739_MOESM1_ESM.sdf

Supplementary material 1 (SDF 108 KB)—Structure data files b-CD_76.SDF and am-b-CD_40.SDF contain the optimized 3D structures of 76 and 40 chiral guests and experimentally estimated standard free energies for the 1:1 inclusion complexation with β-cyclodextrin (β-CD) and 6-amino-6-deoxy-β-cyclodextrin (am-β-CD) in water at 298.15 K.

Supplementary material 2 (SDF 206 KB)

Supplementary material 3 (DOCX 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovev, A., Solov’ev, V. 3D molecular fragment descriptors for structure–property modeling: predicting the free energies for the complexation between antipodal guests and β-cyclodextrins. J Incl Phenom Macrocycl Chem 89, 167–175 (2017). https://doi.org/10.1007/s10847-017-0739-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0739-z

Keywords

Navigation