Skip to main content
Log in

Cucurbit[5]uril-mediated electrochemical hydrogenation of α,β-unsaturated ketones

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The potential of cucurbit[5]uril to be used as inverse phase transfer catalyst in electrocatalytic hydrogenation of α,β-unsaturated ketones is illustrated. The interaction behavior among isophorone and cucurbit[5]uril was also investigated using cyclic voltammetry and UV/vis absorption spectroscopy. The results concerning to both techniques revealed an enhancement in the intensity of the absorption peak and also in the current cathodic peak of isophorone in presence of cucurbit[5]uril. This achievement is related to the increase of the isophorone solubility in the medium being an indicative of a host-guest complex formation. The electrochemical hydrogenation of isophorone using cucurbit[5]uril was more efficient than others well-stablish methodologies. Regarding to (R)-(+)-pulegone and (S)-(+)-carvone, the use of cucurbit[5]uril leads to an increase of 17% and 9%, on average, respectively, in the yields when compared to the control reaction. The efficiency of selective C=O bond hydrogenation of 1-acetyl-1-cyclohexene was evaluated. The presence of cucurbit[5]uril increased by 12% the hydrogenations yields of 1-acetyl-1-cyclohexene when compared to the control reaction. In this sense, these results open up an opportunity to carry out electrocatalytic reactions within the cucurbit[5]uril environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1

Similar content being viewed by others

References

  1. Hazra, S., Hossain, M., Kumar, G.S.: Studies on α-, β-, and γ-cyclodextrin inclusion complexes of isoquinoline alkaloids berberine, palmatine and coralyne. J. Incl. Phenom. Macrocycl. Chem. 78, 311–323 (2014). https://doi.org/10.1007/s10847-013-0301-6

    Article  CAS  Google Scholar 

  2. Vilar, M., Navarro, M.: β-Cyclodextrin as inverse phase transfer catalyst on the electrocatalytic hydrogenation of organic compounds in water. Electrochim. Acta (2012). https://doi.org/10.1016/j.electacta.2011.10.094

    Article  Google Scholar 

  3. Vilar, M., Navarro, M.: Determination of cyclodextrin inclusion constant for aromatic carbonyl compounds through spectrophotometric and electrochemical methods. Electrochim. Acta (2010). https://doi.org/10.1016/j.electacta.20.10.08.079

    Article  Google Scholar 

  4. Koner, A.L., Nau, W.M.: Cucurbituril encapsulation of fluorescent dyes. Supramol. Chem. 19, 55–66 (2007). https://doi.org/10.1080/10610270600910749

    Article  CAS  Google Scholar 

  5. Pandey, S., Soni, V.K., Choudhary, G., Sharma, P.R., Sharma, R.K.: Understanding behaviour of vitamin-C guest binding with the cucurbit[6]uril host. Supramol. Chem. 29, 387–394 (2017). https://doi.org/10.1080/10610278.2016.1243791

    Article  CAS  Google Scholar 

  6. Chapin, J.C., Kvasnica, M., Purse, B.W.: Molecular encapsulation in pyrogallolarene hexamers under nonequilibrium conditions. J. Am. Chem. Soc. 134, 15000–15009 (2012). https://doi.org/10.1021/ja305252t

    Article  CAS  PubMed  Google Scholar 

  7. Bagatin, I.A., Cruz, A.T., Toma, H.E., Politi, M.J., Demets, G.J.F.: Synthesis of a naphthalimide functionalized calix[4]arene; a host type fluorophore for inclusion compounds in organic medium. J. Incl. Phenom. 52, 189–193 (2005). https://doi.org/10.1007/s10847-004-6385-2

    Article  CAS  Google Scholar 

  8. Takacs, Z., Brotin, T., Dutasta, J.P., Lang, J., Todde, G., Kowalewski, J.: Inclusion of chloromethane guests affects conformation and internal dynamics of cryptophane-D host. J. Phys. Chem. B. 116, 7898–7913 (2012). https://doi.org/10.1021/jp303469x

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, C., Shen, W., Fan, R., Zhang, G., Shuang, S., Dong, C., Choi, M.M.F.: Spectral study on the inclusion complex of cryptophane-E and CHCl3. Spectrochim. Acta 75, 157–161 (2010). https://doi.org/10.1016/j.saa.2009.10.004

    Article  CAS  Google Scholar 

  10. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1358 (1997). https://doi.org/10.1021/cr960371r

    Article  CAS  PubMed  Google Scholar 

  11. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998). https://doi.org/10.1021/cr970025p

    Article  CAS  PubMed  Google Scholar 

  12. Lawtrakul, L., Viernstein, H., Wolschann, P.: Molecular dynamics simulations of β-cyclodextrin in aqueous solution. Int. J. Pharm. 256, 33–41 (2003). https://doi.org/10.1016/S0378-5173(03)00060-7

    Article  CAS  PubMed  Google Scholar 

  13. Liu, L., Guo, Q.X.: The driving forces in the inclusion complexation of cyclodextrins. J. Incl. Phenom. 42, 1–14 (2002). https://doi.org/10.1023/A:1014520830813

    Article  CAS  Google Scholar 

  14. Li, S., Purdy, W.C.: Cyclodextrins and their applications in analytical chemistry. Chem. Rev. 92, 1457–1470 (1992). https://doi.org/10.1021/cr00014a009

    Article  CAS  Google Scholar 

  15. de Medeiros, A.O., da Paz, J.A., Sales, A., Navarro, M., de Menezes, F.D., Vilar, M.: Statistical design analysis of isophorone electrocatalytic hydrogenation: the use of cyclodextrins as inverse phase transfer catalysts. J. Incl. Phenom. Macrocycl. Chem. 87, 13–20 (2017). https://doi.org/10.1007/s10847-016-0672-6

    Article  CAS  Google Scholar 

  16. Saenger, W., Jacob, J., Gessler, K., Steiner, T., Hoffmann, D., Sanbe, H., Koizumi, K., Smith, S.M., Takaha, T.: Structures of the common cyclodextrins and their larger analogues beyond the doughnut. Chem. Rev. 98, 1787–1802 (1998). https://doi.org/10.1021/cr9700181

    Article  CAS  PubMed  Google Scholar 

  17. Szejtli, J.: Utilization of cyclodextrins in industrial products and processes. J. Mater. Chem. 7, 575–587 (1997). https://doi.org/10.1039/a605235e

    Article  CAS  Google Scholar 

  18. Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015). https://doi.org/10.1039/C4CS00273C

    Article  CAS  PubMed  Google Scholar 

  19. Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L., Lu, X.: Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213–1247 (2012)

    Article  CAS  Google Scholar 

  20. Monflier, E., Tilloy, S., Fremy, G., Castanet, Y., Mortreux, A.: A further breakthrough in biphasic, rhodium-catalyzed hydroformylation: the use of Per(2,6-di-O-methyl)-β-cyclodextrin as inverse phase transfer catalyst. Tetrahedron Lett. 36, 9481–9484 (1995). https://doi.org/10.1016/0040-4039(95)02073-X

    Article  CAS  Google Scholar 

  21. Tilloy, S., Bricout, H., Monflier, E.: Cyclodextrins as inverse phase transfer catalysts for the biphasic catalytic hydrogenation of aldehydes: a green and easy alternative to conventional mass transfer promoters. Green Chem. 4, 188–193 (2002). https://doi.org/10.1039/b108405b

    Article  CAS  Google Scholar 

  22. Strimbu, L., Liu, J., Kaifer, A.E.: Cyelodextrin-capped palladium nanoparticles as catalysts for the Suzuki reaction. Langmuir 19, 483–485 (2003). https://doi.org/10.1021/la026550n

    Article  CAS  Google Scholar 

  23. Freeman, W.A., Mock, W.L., Shih, N.Y.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981). https://doi.org/10.1021/ja00414a070

    Article  CAS  Google Scholar 

  24. Behrend, R., Meyer, E., Rusche, F.: Ueber Condensationsproducte aus Glycoluril und Formaldehyd. Justus Liebigs Ann. Chem. 339, 1–37 (1905). https://doi.org/10.1002/jlac.19053390102

    Article  Google Scholar 

  25. Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000). https://doi.org/10.1021/JA993376P

    Article  CAS  Google Scholar 

  26. Mock, W.L., Irra, T.A., Wepsiec, J.P., Adhya, M.: Catalysis by cucurbituril. The significance of bound-substrate destabilization for induced triazole formation. J. Org. Chem. 54, 5302–5308 (1989). https://doi.org/10.1021/jo00283a024

    Article  CAS  Google Scholar 

  27. Koner, A.L., Márquez, C., Dickman, M.H., Nau, W.M.: Transition-metal-promoted chemoselective photoreactions at the cucurbituril rim. Angew. Chem. Int. Ed. 50, 545–548 (2011). https://doi.org/10.1002/anie.201005317

    Article  CAS  Google Scholar 

  28. Barooah, N., Pemberton, B.C., Sivaguru, J.: Manipulating photochemical reactivity of coumarins within cucurbituril nanocavities. Org. Lett. 10, 3339–3342 (2008). https://doi.org/10.1021/ol801256r

    Article  CAS  PubMed  Google Scholar 

  29. Anastas, P., Eghbali, N.: Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010). https://doi.org/10.1039/b918763b

    Article  CAS  PubMed  Google Scholar 

  30. Jicsinszky, L.: Catalytic transfer hydrogenation of cyclodextrin azides and benzylated glucose derivatives. J. Incl. Phenom. Mol. Recognit. Chem. 18, 247–254 (1994). https://doi.org/10.1007/BF00708731

    Article  CAS  Google Scholar 

  31. Zahalka, H.A., Januszkiewicz, K., Alper, H.: Olefin oxidation catalyzed by palladium chloride using cyclodextrins as phase transfer agents. J. Mol. Catal. 35, 249–253 (1986). https://doi.org/10.1016/0304-5102(86)87030-4

    Article  CAS  Google Scholar 

  32. Harada, A., Hu, Y., Takahashi, S.: Cyclodextrin-palladium chloride. New catalytic system for selective oxidation of olefins to ketones. Chem. Lett. 12, 2083–2084 (1986). https://doi.org/10.1246/cl.1986.2083

    Article  Google Scholar 

  33. Baur, M., Frank, M., Schatz, J., Schildbach, F.: Water-soluble calix[n]arenes as receptor molecules for non-polar substrates and inverse phase transfer catalysts. Tetrahedron 57, 6985–6991 (2001). https://doi.org/10.1016/S0040-4020(01)00653-6

    Article  CAS  Google Scholar 

  34. Maiorova, N.A., Stepanov, A.A., Grachev, M.K., Kurochkina, G.I., Grinberg, V.A.: Electrochemical hydrogenation of acetophenone and methyl-4-isobutylacetophenone in a two-phase water organic system containing beta-cyclodextrin. Russ. J. Electrochem. 40, 1074–1078 (2004)

    Article  CAS  Google Scholar 

  35. Farnia, G., Sandonà, G., Fornasier, R., Marcuzzi, F.: Electrochemical reduction of carbonyl compounds in aqueous media in the presence of β-cyclodextrin. Reduction of acetophenone and p-methoxyacetophenone in alkaline solution. Electrochim. Acta 35, 1149–1155 (1990). https://doi.org/10.1016/0013-4686(90)80031-I

    Article  CAS  Google Scholar 

  36. Amatore, C., Buriez, O., Labbé, E., Verpeaux, J.N.: Supramolecular effects of cyclodextrins on the electrochemical reduction and reactivity of aromatic carbonyl compounds. J. Electroanal. Chem. 621, 134–145 (2008). https://doi.org/10.1016/j.jelechem.2007.07.029

    Article  CAS  Google Scholar 

  37. Pedrotti, J.J., Angnes, L., Gutz, I.G.R.: Miniaturized reference electrodes with microporous polymer junctions. Electroanalysis 8, 673–675 (1996). https://doi.org/10.1002/elan.1140080713

    Article  Google Scholar 

  38. McIntosh, A.I., Watson, D.J., Burton, J.W., Lambert, R.M.: Heterogeneously catalyzed asymmetric C=C hydrogenation: origin of enantioselectivity in the proline-directed Pd/isophorone system. J. Am. Chem. Soc. 128, 7329–7334 (2006). https://doi.org/10.1021/ja061104y

    Article  CAS  PubMed  Google Scholar 

  39. Flego, C., Perego, C.: Acetone condensation as a model reaction for the catalytic behavior of acidic molecular sieves: a UV–Vis study. Appl. Catal. A 192, 317–329 (2000). https://doi.org/10.1016/S0926-860X(99)00410-X

    Article  CAS  Google Scholar 

  40. Zuman, P., Spritzer, L.: Differences in products of electroreduction of some unsaturates aldehydes and ketones. J. Electroanal. Chem. Interfacial Electrochem. 69, 433–434 (1976). https://doi.org/10.1016/S0022-0728(76)80146-5

    Article  CAS  Google Scholar 

  41. Ryvolová-KejharováP, A.: Zuman: polarographic reduction of aldehydes and ketones: VIII. Polarographic behaviour of chalcone and dihydrochalcone. J. Electroanal. Chem. Interfacial Electrochem. 21, 197–219 (1969). https://doi.org/10.1016/S0022-0728(69)80039-2

    Article  Google Scholar 

  42. Zuman, P.: Aspects of electrochemical behavior of aldehydes and ketones in protic media. Electroanalysis 18, 131–140 (2006). https://doi.org/10.1002/elan.200503367

    Article  CAS  Google Scholar 

  43. Pemberton, B.C., Raghunathan, R., Volla, S., Sivaguru, J.: From containers to catalysts: supramolecular catalysis within cucurbiturils. Chemistry 18, 12178–12190 (2012). https://doi.org/10.1002/chem.201202083

    Article  CAS  PubMed  Google Scholar 

  44. Lessard, J.: Electrocatalytic hydrogenation. In: Kreysa, G., Ota, K., Savinell, R.F. (eds.) Encyclopedia of Applied Electrochemistry. Springer, New York (2014)

    Google Scholar 

  45. Nagaonkar, U.C., Bhagwat, S.S.: Selective reduction of isophorone in micellar media. Ind. Eng. Chem. Res. 46, 1923–1927 (2007). https://doi.org/10.1021/ie0603870

    Article  CAS  Google Scholar 

  46. Hou, Y., Ren, S., Niu, M., Wu, W.: Improvement of the selectivity of isophorone hydrogenation by Lewis acids. R. Soc. Open Sci. (2018). https://doi.org/10.1098/rsos.171523

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pisarek, M., Łukaszewski, M., Winiarek, P., Kedzierzawski, P., Janik-Czachor, M.: Selective catalytic hydrogenation of isophorone on Ni–Al alloy modified with Cr. Mater. Chem. Phys. 114, 774–779 (2009). https://doi.org/10.1016/j.matchemphys.2008.10.027

    Article  CAS  Google Scholar 

  48. Zouaoui, A., Stéphan, O., Ourari, A., Moutet, J.C.: Electrocatalytic hydrogenation of ketones and enones at nickel microparticles dispersed into poly(pyrrole-alkylammonium) films. Electrochim. Acta 46, 49–58 (2000). https://doi.org/10.1016/S0013-4686(00)00533-8

    Article  CAS  Google Scholar 

  49. Coche, L., Ehui, B., Limosin, D., Moutet, J.C.: Electrocatalytic hydrogenation using precious metal microparticles in redox-active polymer films. J. Org. Chem. 55, 5905–5910 (1990). https://doi.org/10.1021/jo00310a025

    Article  CAS  Google Scholar 

  50. Chambrion, P., Roger, L., Lessard, J., Béraud, V., Mailhot, J., Thomalla, M.: The influence of surfactants on the electrocatalytic hydrogenation of organic compounds in micellar, emulsified, and hydroorganic solutions at Raney nickel electrodes. Can. J. Chem. 73, 804–815 (1995). https://doi.org/10.1139/v95-101

    Article  CAS  Google Scholar 

  51. Vannice, M.A., Sen, B.: Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum. J. Catal. 115, 65–78 (1989). https://doi.org/10.1016/0021-9517(89)90007-9

    Article  CAS  Google Scholar 

  52. Ponec, V.: On the role of promoters in hydrogenations on metals; α, β-unsaturated aldehydes and ketones. Appl. Catal. A 149, 27–48 (1997). https://doi.org/10.1016/S0926-860X(96)00250-5

    Article  CAS  Google Scholar 

  53. Mahdavi, B., Chambrion, P., Binette, J., Martel, E., Lessard, J.: Electrocatalytic hydrogenation of conjugated enones on nickel boride, nickel, and Raney nickel electrodes. Can. J. Chem. 73, 846–852 (1995). https://doi.org/10.1139/v95-105

    Article  CAS  Google Scholar 

  54. Vilar, M., Oliveira, J.L., Navarro, M.: Investigation of the hydrogenation reactivity of some organic substrates using an electrocatalytic method. Appl. Catal. A (2010). https://doi.org/10.1016/j.apcata.2009.09.041

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge IFPE and CNPq (456523/2014-6) granting for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio Vilar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 1157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sales, A., de Oliveira e Castro, I.A., de Menezes, F.D. et al. Cucurbit[5]uril-mediated electrochemical hydrogenation of α,β-unsaturated ketones. J Incl Phenom Macrocycl Chem 95, 295–305 (2019). https://doi.org/10.1007/s10847-019-00944-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-019-00944-4

Keywords

Navigation