Skip to main content
Log in

Computing the Discrete Fourier Transform on a Hexagonal Lattice

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The computation of the Discrete Fourier Transform for a general lattice in ℝd can be reduced to the computation of the standard 1-dimensional Discrete Fourier Transform. We provide a mathematically rigorous but simple treatment of this procedure and apply it to the DFT on the hexagonal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dudgeon, D., Mersereau, R.M.: Multidimensional Digital Signal Processing. Prentice Hall, Englewood Cliffs (1984)

    MATH  Google Scholar 

  2. Dummit, D., Foote, R.: Abstract Algebra. Prentice Hall International, Englewood Cliffs (1991)

    MATH  Google Scholar 

  3. Ehrhardt, J.C.: Hexagonal fast Fourier transform with rectangular output. IEEE Trans. Signal Process. 41, 1468–1472 (1993)

    Article  Google Scholar 

  4. Fitz, A.P., Green, R.J.: Fingerprint classification using a hexagonal fast Fourier transform. Pattern Recognit. 29, 1587–1597 (1996)

    Article  Google Scholar 

  5. Gibson, L., Lucas, D.: Spatial data processing using generalized balanced ternary. In: Proc. of PRIP 82, IEEE Computer Society Conference on Pattern Recognition and Image Processing, pp. 566–571, 1982

  6. Guessoum, A., Mersereau, R.M.: Fast algorithms for the multidimensional discrete Fourier transform. IEEE Trans. Acoutics Speech Signal Process. 34, 937–943 (1986)

    Article  Google Scholar 

  7. Grigoryan, A.M.: Efficient algorithms for computing 2-D hexagonal Fourier transforms. IEEE Trans. Signal Process. 50, 1438–1448 (2002)

    Article  Google Scholar 

  8. Keating, K., Vince, A.: Isohedral polyomino tiling of the plane. Discret. Comput. Geom. 21, 615–630 (1999)

    Article  MATH  Google Scholar 

  9. Kitto, W., Vince, A., Wilson, D.: An isomorphism between the p-adic integers and a ring associated with a tiling of N-space by permutahedra. Discret. Appl. Math. 52, 39–51 (1994)

    Article  MATH  Google Scholar 

  10. Mersereau, R.M., Speake, T.C.: A unified treatment of Cooley-Tukey algorithms for the evaluation of the multidimensional DFT. IEEE Trans. Acoustics Speech Signal Process. 29, 1011–1018 (1981)

    Article  MATH  Google Scholar 

  11. Middleton, L., Sivaswamy, J.: Hexagonal Image Processing. Springer, London (2005)

    MATH  Google Scholar 

  12. Nel, A.: Hexagonal image processing. In: Proceedings Southern African Conference on Communication and Signal Processing, COMSIG, IEEE 23, pp. 109–113, 1989

  13. Staunton, R.C.: The processing of hexagonally sampled images. Adv. Imaging Electron Phys. 119, 191–265 (2001)

    Google Scholar 

  14. Tolimieri, R.: Algorithms for Discrete Fourier Transform and Convolution. Springer, New York (1997)

    MATH  Google Scholar 

  15. Zapata, J., Ritter, G.: Fast Fourier transform for hexagonal aggregates. J. Math. Imaging Vis. 12, 183–197 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Vince.

Additional information

The authors would like to thank the PYXIS INNOVATION Inc for financial support, and Professors D. Wilson and G. Ritter for stimulating conversations on the Fourier transform.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vince, A., Zheng, X. Computing the Discrete Fourier Transform on a Hexagonal Lattice. J Math Imaging Vis 28, 125–133 (2007). https://doi.org/10.1007/s10851-007-0013-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0013-x

Keywords

Navigation