Skip to main content
Log in

A Quotient Space Formulation for Generative Statistical Analysis of Graphical Data

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Complex analyses involving multiple, dependent random quantities often lead to graphical models—a set of nodes denoting variables of interest, and corresponding edges denoting statistical interactions between nodes. To develop statistical analyses for graphical data, especially towards generative modeling, one needs mathematical representations and metrics for matching and comparing graphs, and subsequent tools, such as geodesics, means, and covariances. This paper utilizes a quotient structure to develop efficient algorithms for computing these quantities, leading to useful statistical tools, including principal component analysis, statistical testing, and modeling. We demonstrate the efficacy of this framework using datasets taken from several problem areas, including letters, biochemical structures, and social networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Almohamad, H., Duffuaa, S.O.: A linear programming approach for the weighted graph matching problem. IEEE Trans. Pattern Anal. Mach. Intell. 15(5), 522–525 (1993)

    Article  Google Scholar 

  2. Bahonar, H., Mirzaei, A., Sadri, S., Wilson, R.: Graph embedding using frequency filtering. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

  3. Bai, Y., Ding, H., Qiao, Y., Marinovic, A., Gu, K., Chen, T., Sun, Y., Wang, W.: Unsupervised inductive graph-level representation learning via graph-graph proximity. In: IJCAI (2019)

  4. Caelli, T., Kosinov, S.: An eigenspace projection clustering method for inexact graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 26(4), 515–519 (2004)

    Article  Google Scholar 

  5. Carletti, V., Foggia, P., Saggese, A., Vento, M.: Challenging the time complexity of exact subgraph isomorphism for huge and dense graphs with vf3. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 804–818 (2017)

    Article  Google Scholar 

  6. Chapel, L., Alaya, M.Z., Gasso, G.: Partial optimal transport with applications on positive-unlabeled learning. Preprint arXiv:2002.08276 (2020)

  7. Chen, H., Perozzi, B., Hu, Y., Skiena, S.: Harp: Hierarchical representation learning for networks. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

  8. Chizat, L., Peyré, G., Schmitzer, B., Vialard, F.X.: Scaling algorithms for unbalanced optimal transport problems. Math. Comput. 87(314), 2563–2609 (2018)

    Article  MathSciNet  Google Scholar 

  9. Chowdhury, S., Needham, T.: Gromov-wasserstein averaging in a riemannian framework. Preprint arXiv:1910.04308 (2019)

  10. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. J. Pattern Recogn. Artif. Intell. 18(03), 265–298 (2004)

    Article  Google Scholar 

  11. Dai, M., Zhang, Z., Srivastava, A.: Testing stationarity of brain functional connectivity using change-point detection in fmri data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 19–27 (2016)

  12. De Souza, F.D., Sarkar, S., Srivastava, A., Su, J.: Pattern theory-based interpretation of activities. In: 2014 22nd International Conference on Pattern Recognition (ICPR), IEEE, pp. 106–111 (2014)

  13. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

  14. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  15. Errica, F., Podda, M., Bacciu, D., Micheli, A.: A fair comparison of graph neural networks for graph classification. Preprint arXiv:1912.09893 (2019)

  16. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res. Logist. Q. 3(1–2), 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  17. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 377–388 (1996)

    Article  Google Scholar 

  18. Gramfort, A., Peyré, G., Cuturi, M.: Fast optimal transport averaging of neuroimaging data. In: International Conference on Information Processing in Medical Imaging, Springer, pp. 261–272 (2015)

  19. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, pp. 855–864 (2016)

  20. Guo, X., Bal, A.B., Needham, T., Srivastava, A.: Statistical shape analysis of brain arterial networks (bans). arXiv:2007.04793 (2020)

  21. Hakimi, S.L.: Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper. Res. 13(3), 462–475 (1965)

    Article  MathSciNet  Google Scholar 

  22. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

  23. Han, L., Wilson, R.C., Hancock, E.R.: Generative graph prototypes from information theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2013–2027 (2015)

    Article  Google Scholar 

  24. Horaud, R.: A short tutorial on graph laplacians, laplacian embedding, and spectral clustering (2012)

  25. Jain, B.J.: On the geometry of graph spaces. Discrete Appl. Math. 214, 126–144 (2016a)

  26. Jain, B.J.: Statistical graph space analysis. Pattern Recogn. 60, 802–812 (2016b)

  27. Jain, B.J., Obermayer, K.: Structure spaces. J. Mach. Learn. Res. 10, 2667–2714 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Jain, B.J., Obermayer, K.: Learning in riemannian orbifolds. Preprint arXiv:1204.4294 (2012)

  29. Kersting, K., Kriege, N.M., Morris, C., Mutzel, P., Neumann, M.: Benchmark data sets for graph kernels. http://www.graphlearning.io/ (2020)

  30. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. Preprint arXiv:1609.02907 (2016)

  31. Kolaczyk, E.D., Lin, L., Rosenberg, S., Walters, J., Xu, J., et al.: Averages of unlabeled networks: geometric characterization and asymptotic behavior. Ann. Stat. 48(1), 514–538 (2020)

    Article  MathSciNet  Google Scholar 

  32. Krcmar, M., Dhawan, A.: Application of genetic algorithms in graph matching. In: Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94), IEEE, vol. 6, pp. 3872–3876 (1994)

  33. Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. Appl. Netw. Sci. 5(1), 1–42 (2020)

    Article  Google Scholar 

  34. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  35. Lyzinski, V., Fishkind, D.E., Fiori, M., Vogelstein, J.T., Priebe, C.E., Sapiro, G.: Graph matching: Relax at your own risk. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 60–73 (2016)

    Article  Google Scholar 

  36. Mackaness, W.A., Beard, K.M.: Use of graph theory to support map generalization. Cartogr. Geogr. Inf. Syst. 20(4), 210–221 (1993)

    Google Scholar 

  37. Maron, H., Lipman, Y.: (probably) concave graph matching. Preprint arXiv:1807.09722 (2018)

  38. Mémoli, F.: Gromov-wasserstein distances and the metric approach to object matching. Found. Comput. Math. 11(4), 417–487 (2011)

    Article  MathSciNet  Google Scholar 

  39. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec: Learning distributed representations of graphs. Preprint arXiv:1707.05005 (2017)

  40. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and Kernel Machines, vol. 68. World Scientific, London (2007)

    Book  Google Scholar 

  41. Ortega, A., Frossard, P., Kovačević, J., Moura, J.M., Vandergheynst, P.: Graph signal processing: overview, challenges, and applications. Proc. IEEE 106(5), 808–828 (2018)

    Article  Google Scholar 

  42. Pele, O., Werman, M.: A linear time histogram metric for improved sift matching. In: European Conference on Computer Vision, Springer, pp. 495–508 (2008)

  43. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, pp. 701–710 (2014)

  44. Peyré, G., Cuturi, M., Solomon, J.: Gromov-wasserstein averaging of kernel and distance matrices. In: International Conference on Machine Learning, pp. 2664–2672 (2016)

  45. Riesen, K., Bunke, H.: Iam graph database repository for graph based pattern recognition and machine learning. In: Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), Springer, pp. 287–297 (2008)

  46. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)

    Article  Google Scholar 

  47. Sato, R.: A survey on the expressive power of graph neural networks. Preprint arXiv:2003.04078 (2020)

  48. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  49. Séjourné T, Vialard FX, Peyré G (2020) The unbalanced gromov wasserstein distance: Conic formulation and relaxation. Preprint arXiv:2009.04266

  50. Severn, K., Dryden, I.L., Preston, S.P.: Manifold valued data analysis of samples of networks, with applications in corpus linguistics. Preprint arXiv:1902.08290 (2019)

  51. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12(77), 2539–2561 (2011)

    MathSciNet  MATH  Google Scholar 

  52. Shirley, M.D., Rushton, S.P.: The impacts of network topology on disease spread. Ecol. Complex. 2(3), 287–299 (2005)

    Article  Google Scholar 

  53. Song, L., Fukumizu, K., Gretton, A.: Kernel embeddings of conditional distributions: a unified kernel framework for nonparametric inference in graphical models. IEEE Signal Process. Mag. 30(4), 98–111 (2013)

    Article  Google Scholar 

  54. Srivastava, A., Klassen, E.P.: Functional and Shape Data Analysis. Springer, Berlin (2016)

    Book  Google Scholar 

  55. Sun, J., Kunegis, J., Staab, S.: Predicting user roles in social networks using transfer learning with feature transformation. In: Proc. ICDM Workshop on Data Mining in Networks (2016)

  56. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, International World Wide Web Conferences Steering Committee, pp. 1067–1077 (2015)

  57. Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook social graph. Preprint arXiv:1111.4503 (2011)

  58. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 695–703 (1988)

    Article  Google Scholar 

  59. Vayer, T., Chapel, L., Flamary, R., Tavenard, R., Courty, N.: Optimal transport for structured data with application on graphs. Preprint arXiv:1805.09114 (2018)

  60. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010)

    MathSciNet  MATH  Google Scholar 

  61. Vogelstein, J.T., Conroy, J.M., Lyzinski, V., Podrazik, L.J., Kratzer, S.G., Harley, E.T., Fishkind, D.E., Vogelstein, R.J., Priebe, C.E.: Fast approximate quadratic programming for graph matching. PLOS one 10(4), e0121002 (2015)

    Article  Google Scholar 

  62. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, pp. 1225–1234 (2016)

  63. Westenberg, M.A., van Hijum, S.A., Lulko, A.T., Kuipers, O.P., Roerdink, J.B.: Interactive visualization of gene regulatory networks with associated gene expression time series data. In: Visualization in Medicine and Life Sciences, Springer, pp. 293–311 (2008)

  64. White, D., Wilson, R.C.: Generative models for chemical structures. J. Chem. Inf. Model. 50(7), 1257–1274 (2010)

    Article  Google Scholar 

  65. Wikipedia talk, chinese network dataset—KONECT. http://konect.uni-koblenz.de/networks/wiki_talk_zh (2017)

  66. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374 (2015)

  67. Yang, J.: Market segmentation and information asymmetry in chinese stock markets: a var analysis. Financ. Rev. 38(4), 591–609 (2003)

    Article  Google Scholar 

  68. Zhou, F., De la Torre, F.: Factorized graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1774–1789 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the creators of different public datasets used in this paper. The authors also thank Dr. Adam Duncan for his contributions in the implementation of a preliminary version of the approach and Dr. Derek Tucker for his contribution in the Python implementation of FAQ algorithm. This research was supported in part by the Grants NSF CDS&E DMS 1953087 and NSF IIS 1955154 to AS, and NSF IIS 1956050 to SS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyang Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Srivastava, A. & Sarkar, S. A Quotient Space Formulation for Generative Statistical Analysis of Graphical Data. J Math Imaging Vis 63, 735–752 (2021). https://doi.org/10.1007/s10851-021-01027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-021-01027-1

Keywords

Navigation