Skip to main content
Log in

Grain boundary engineering for superplasticity in steels

  • Grain Boundary and Interface Engineering
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure with suitable boundary characters for superplasticity is summarized for the steels which consist of two phases, i.e., ferrite (bcc α) + austenite (fcc γ) or ferrite (α) + cementite (orthorhombic θ -Fe3C).

In (α + γ) duplex alloys, a conventional thermomechanical processing (solution treatment + heavy cold rolling + aging) produces the (α + γ) duplex structure through the competition of recovery/recrystallization of matrix and precipitation. In Fe-Cr-Ni (α + γ) duplex stainless steels with high γ fractions (40–50%), α matrix undergoes recovery to form α subgrain boundaries and γ phase precipitates on α subgrain boundaries with near Kurdjumov-Sachs relationship during aging. By warm deformation, the transition of α boundary structure from low-angle to high-angle type occurs by dynamic continuous recrystallization of α matrix and, simultaneously, coherency across α/γ boundary is lost. Contrarily, α phase first precipitates in deformed γ matrix in Ni-Cr-Fe based alloy during aging. Subsequently discontinuous recrystallization of γ matrix takes place and the (α + γ) microduplex structure with high-angle γ boundaries is formed. The formation of those high-angle boundaries in (α + γ) microduplex structure induces the high strain rate superplasticity.

In an ultra-high carbon steel, when pearlite was austenitized in the (γ + θ) region, quenched and tempered at the temperature below A1, an (α + θ) microduplex structure in which most of α boundaries are of high-angle type is formed through the recovery of the fine (α ′ lath martensite + θ) mixture during tempering. Such (α + θ) microduplex structure with high angle α boundaries exhibits higher superplasticity than that formed by heavy warm rolling or cold rolling and annealing of pearlite which contains higher fraction of low angle boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Maehara, Trans. ISIJ 25 (1985) 69.

    Google Scholar 

  2. Y. Maehara and Y. Ohmori, Metall. Trans. A 18A (1987) 663.

    Google Scholar 

  3. H. W. Hayden, R. C. Gibson, H. F. Merrick and J. H. Brophy, Trans. ASM 60 (1967) 3.

    Google Scholar 

  4. J. Wadsworth and O. D. Sherby, J. Mater. Sci. 13 (1978) 2645.

    Article  Google Scholar 

  5. K. Tsuzaki, H. Matsuyama, M. Nagao and T. Maki, Mater. Trans. JIM 31 (1990) 983.

    Google Scholar 

  6. T. Yamazaki, Y. Mizuno, T. Furuhara and T. Maki, Mater. Sci. Forum 304–306 (1999) 127.

    Google Scholar 

  7. T. Furuhara, Y. Mizuno and T. Maki, Mater. Trans. JIM 40 (1999) 815.

    Google Scholar 

  8. E. Sato, S. Furimoto, T. Furuhara, K. Tsuzaki and T. Maki, Mater. Sci. Forum 304–306 (1999) 133.

    Google Scholar 

  9. T. Furuhara, E. Sato, T. Mizoguchi, S. Furimoto and T. Maki, Mater. Trans. 43 (2002) 2455.

    Google Scholar 

  10. K. Ameyama, K. Murakami, T. Maki and I. Tamura, J. Jpn. Inst. Met. 49 (1985) 1045.

    Google Scholar 

  11. T. Maki, T. Furuhara and K. Tsuzaki, ISIJ Inter. 41 (2001) 571.

    Google Scholar 

  12. K. Tsuzaki, Huang Xiaoxu and T. Maki, Acta Metall. Mater. 44 (1996) 4491.

    Google Scholar 

  13. S. Hashimoto, F. Moriwaki, T. Mimaki, S. Miura in “Superplasticity in Advanced Materials,” edited by S. Hori, M. Tokizane, N. Furushiro (The Japan Society for Research on Superplasticity, 1991) p. 23.

  14. O. D. Sherby, B. Walser, C. M. Young and E. M. Cady, Scripta Metall. 9 (1975) 569.

    Article  Google Scholar 

  15. B. Walser and O. D. Sherby, Metall. Trans. A 10A (1979) 1461.

    Google Scholar 

  16. O. D. Sherby, T. Oyama, D. W. Kum, B. Walser and J. Wadsworth, J. Metals 37 (1985) 50.

    Google Scholar 

  17. D. R. Lesure, C. M. Syn, A. Goldberg, J. Wadsworth and O. D. Sherby, J. Metals 45 (1993) 40.

    Google Scholar 

  18. T. Oyama, O. D. Sherby, J. Wadsworth and B. Warser, Scripta Metall. 18 (1984) 799.

    Article  Google Scholar 

  19. K. Seto, T. Kato and H. Abe, Mat. Res. Symp. Proc. 196 (1990) 99.

    Google Scholar 

  20. T. Mizoguchi, T. Furuhara, T. Maki, in Proc. Int. Symp. on Ultra-Fine Grained Steels (ISIJ, 2001), 198.

  21. S. Tagashira, K. Sakai, T. Furuhara and T. Maki, ISIJ Inter. 40 (2000) 1149.

    Google Scholar 

  22. T. Maki, K. Tsuzaki and I. Tamura, Trans. ISIJ 20 (1980) 207.

    Google Scholar 

  23. T. Maki, S. Morito, T. Furuhara, in Proc. 19th ASM Heat Treat. Soc. Conf. (ASM International, Materials Park, OH, 2000) p. 631.

  24. A. Ohmori, S. Torizuka, K. Nagai, K. Yamada and Y. Mukaigo, Tetsu-to-Hagane 88 (2002) 857.

    Google Scholar 

  25. G. Kelly, H. Beladi and P. D. Hodgson, ISIJ Inter. 42 (2002) 1585.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuhara, T., Maki, T. Grain boundary engineering for superplasticity in steels. J Mater Sci 40, 919–926 (2005). https://doi.org/10.1007/s10853-005-6510-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-6510-7

Keywords

Navigation