Skip to main content
Log in

The influence of porosity on the fatigue crack growth behavior of Ti–6Al–4V laser welds

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of porosity––a common welding defect––on the fatigue crack growth rate (FCGR) in Ti–6Al–4V laser welds was investigated. The experimental results reveal that porosity was present in partial penetration welds over a narrow fusion zone (FZ) with martensite structure. The FCGR of the FZ was lower than that of the base plate. The fracture surface morphology of weld metal was much rougher as compared to that of the base plate. Randomly oriented martensite in the FZ led to local cleavage fracture along a preferred plane, thus, altering the crack growth direction significantly out of the primary crack plane. The zigzag crack path in the FZ resulted in a reduced FCGR at a given ΔK compared to the base plate. Besides, the porous weld showed a serration on the crack growth curve, and behaved the similar crack growth characteristics as the defect free one. SEM fractography revealed that the deflection of crack path around porosity together with local notch blunting as the crack tip pierced into porosity, balanced the increased FCGR for the occurrence of instant crack advance as the crack front reached the porosity at a low stress ratio. In contrast, the serration and drop in FCGR occurred sparingly at a high stress ratio as the crack front met the porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thomas G, Ramachandra V, Nair MJ, Nagarajan KV, Vasudevan R (1992) Weld J 71:15s

    Google Scholar 

  2. Lancaster JF (1984) The physics of welding. Pergamon, Oxford, pp 269–290

    Google Scholar 

  3. Qi Huang G, Kullberg, Skoog H (1994) Optics Laser in Eng 20:3

    Article  Google Scholar 

  4. Li Z, Gobbi SL, Norris I, Zolotovsky S, Richter KH (1997) J Mats Proc Tech 65:203

    Article  Google Scholar 

  5. Thomas G, Ramachandra V, Nagarajan KV, Pant B, Sarkar BK, Vasudevan R (1989) Weld J 69:336s

    Google Scholar 

  6. Mazumder J, Steen WM (1980) Met Construct 12:423

    CAS  Google Scholar 

  7. Matsunawa A, Kim J, Katayama S (1997) ICALEO, Section-G, pp 73–82

  8. Chen SJ, Devletian JH (1990) Weld J 69:319s

    Google Scholar 

  9. Chen SJ, Devletian JH (1982) Metall Trans 13A:865

    Google Scholar 

  10. Denney PE, Metzbower EA (1989) Weld J 68:342s

    Google Scholar 

  11. Yoder GR, Cooley LA, Crooker TW (1976) Metall Trans 8A:1937

    Google Scholar 

  12. Ravichandran KS (1990) Scripta Metall Mater 24:1275

    Article  CAS  Google Scholar 

  13. Ravichandran KS, Dwarakadasa ES (1989) Scripta Metall 23:1685

    Article  CAS  Google Scholar 

  14. Ravichandran KS, Dwarakadasa ES, Banerjee D (1991) Scripta Metall Mater 25:2115

    Article  CAS  Google Scholar 

  15. Bache MR, Evans WJ, McElhone M (1997) Mater Sci Eng A 234–236:918

    Google Scholar 

  16. Evans WJ, Bache MR, McElhone M, Grabowski L (1997) Int J Fatigue 19:S177

    Article  CAS  Google Scholar 

  17. Bache MR, Evans WJ (2001) Int J Fatigue 23:S319

    Article  CAS  Google Scholar 

  18. Davidson DL, Lankford J (1984) Metall Trans 15A:1931

    CAS  Google Scholar 

  19. Irving PE, Beevers CJ (1974) Metall Trans 5:391

    CAS  Google Scholar 

  20. Yoder GR, Cooley LA, Crooker TW (1978) Metall Trans 9A:1413

    CAS  Google Scholar 

  21. Ogawa T, Tokaji K (1993) Fatigue Fract Eng Mater Struct 16:973

    CAS  Google Scholar 

  22. Fusion welding for aerospace applications, Aerospace material specification AMS-STD-2219A, May (1999)

  23. Saxena A, Hudak SJ (1978) Int J Fracture 14:453

    Article  Google Scholar 

  24. Tsay LW, Tsay CY (1997) Int J Fatigue 19:713

    Article  CAS  Google Scholar 

  25. Shiue RK, Chang CT, Yang MC, Tsay LW (2004) Mat Sci Eng A364:101

    CAS  Google Scholar 

  26. Tsay LW, Yang MC, Chou FY, Shiue RK (2004) Mat Chem Phy 88:348

    Article  CAS  Google Scholar 

  27. Shi YW, Chen BY, Zhang JX (1990) Eng Fract Mech 36:893

    Article  Google Scholar 

  28. Beghini M, Bertini L, Vitale E (1994) Fatigue Fract Eng Mater Struct 17:1433

    Google Scholar 

  29. Kitsunai Y, Takana M, Yoshihisa E (1998) Metall Trans 29A:289

    Google Scholar 

  30. Nelson HG, Williams DP, Stein JE (1972) Metall Trans 3:469

    CAS  Google Scholar 

  31. Suresh S, Ritchie RO (1982) Metall Trans 13A:1627

    Google Scholar 

  32. Wang SH Muller C (1998) J Mat Sci 33:4509

    Article  CAS  Google Scholar 

  33. Kamat SV, Eswaraprasad N (1992) Scripta Metall Mater 26:1713

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this study by National Science Council of Republic China (92-CS-7-019-002). We also appreciate Dr. Raghu V. Prakash, Department of Mechanical Engineering, Indian Institute of Technology, Madras for his valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. W. Tsay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsay, L.W., Shan, YP., Chao, YH. et al. The influence of porosity on the fatigue crack growth behavior of Ti–6Al–4V laser welds. J Mater Sci 41, 7498–7505 (2006). https://doi.org/10.1007/s10853-006-0833-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0833-x

Keywords

Navigation