Skip to main content
Log in

Review on the fracture processes in nanocrystalline materials

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An overview of experimental study, computer simulations and theoretical models of fracture of nanocrystalline materials is presented. The key experimentally detected facts on ductile and brittle fracture processes are discussed. Special attention is paid to computer simulations and theoretical models of nucleation and growth of nanocracks and nanopores in deformed nanocrystalline materials. Also, we discuss mechanisms for fracture suppression in such materials showing good ductility or superplasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Koch CC, Morris DG, Lu K, Inoue A (1999) MRS Bull 24:54

    CAS  Google Scholar 

  2. Gleiter H (2000) Acta Mater 48:1

    Article  CAS  Google Scholar 

  3. Veprek S, Argon AS (2002) J Vac Sci Technol 20:650

    Article  CAS  Google Scholar 

  4. Kumar KS, Suresh S, Van Swygenhoven H (2003) Acta Mater 51:5743

    Article  CAS  Google Scholar 

  5. Milligan WW (2003) Mechanical behavior of bulk nanocrystalline and ultrafine-grain metals. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity. Elsevier, Amsterdam, p 529

  6. Valiev RZ (2004) Nature Mater 3:511

    Article  CAS  Google Scholar 

  7. Gutkin MY, Ovid’ko IA (2004) Plastic deformation in nanocrystalline materials. Springer, Berlin Heidelberg New York

  8. Ovid’ko IA (2005) Int Mater Rev 50:65

    Article  CAS  Google Scholar 

  9. Ovid’ko IA (2005) Rev Adv Mater Sci 10:89

    CAS  Google Scholar 

  10. Han BQ, Lavernia E, Mohamed FA (2004) Rev Adv Mater Sci 9:1

    Google Scholar 

  11. Wolf D, Yamakov V, Phillpot SR, Mukherjee AK, Gleiter H (2005) Acta Mater 53:1

    Article  CAS  Google Scholar 

  12. Lu C, Mai YW, Shen YG (2006) J Mater Sci 41:937

    Article  CAS  Google Scholar 

  13. Mayo MJ (1997) Nanostruct Mater 9:717

    Article  CAS  Google Scholar 

  14. Mishra RS, Valiev RZ, Mcfadden SX, Mukherjee AK (1998) Mater Sci Eng A 252:174

    Article  Google Scholar 

  15. Mcfadden SX, Mishra RS, Valiev RZ, Zhilyaev AP, Mukherjee AK (1999) Nature 398:684

    Article  CAS  Google Scholar 

  16. Islamgaliev RK, Valiev RZ, Mishra RS, Mukherjee AK (2001) Mater Sci Eng A 304–306:206

  17. Valiev RZ, Song C, Mcfadden SX, Mukherjee AK, Mishra RS (2001) Phil Mag A 81:25

    Article  CAS  Google Scholar 

  18. Mishra RS, Valiev RZ, Mcfadden SX, Islamgaliev RK, Mukherjee AK (2001) Phil Mag A 81:37

    Article  CAS  Google Scholar 

  19. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5

    CAS  Google Scholar 

  20. Mukherjee AK (2002) Mater Sci Eng A 322:1

    Article  Google Scholar 

  21. Wang Y, Chen M, Zhou F, Ma E (2002) Nature 419:912

    Article  CAS  Google Scholar 

  22. Champion Y, Langlois C, Guerin-Mailly S, Langlois P, Bonnentien J-L, Hytch M (2003) Science 300:310

    Article  CAS  Google Scholar 

  23. Kumar KS, Suresh S, Chisholm MF, Norton JA, Wang P (2003) Acta Mater 51:387

    Article  CAS  Google Scholar 

  24. Zhan G-D, Kuntz JD, Wan J, Mukherjee AK (2003) Nanomaterials for structural applications. Berndt CC, Fisher T, Ovid’ko IA, Skandan G, Tsakalakos T (eds) MRS Symp. Proc., vol 740, Warrendale, p 49

  25. He G, Eckert J, Loeser W, Schultz L (2003) Nature Mater 2:33

    Article  CAS  Google Scholar 

  26. He G, Hagiwara M, Eckert J, Loeser W (2004) Phil Mag Lett 84:365

    Article  CAS  Google Scholar 

  27. Wang YM, Ma E (2004) Acta Mater 52:1699

    Article  CAS  Google Scholar 

  28. Youssef KM, Scattergood RO, Murty KL, Koch CC (2004) Appl Phys Lett 85:929

    Article  CAS  Google Scholar 

  29. Youssef KM, Scattergood RO, Murty KL, Horton JA, Koch CC (2005) Appl Phys Lett 87:091904

    Article  Google Scholar 

  30. Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Koch CC, Trociewitz UP, Han K (2005) Acta Mater 53:1521

    Article  CAS  Google Scholar 

  31. Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Scr Mater 54:251

    Article  CAS  Google Scholar 

  32. Li H, Ebrahimi F (2004) Appl Phys Lett 84:4307

    Article  CAS  Google Scholar 

  33. Li H, Ebrahimi F (2005) Adv Mater 17:1969

    Article  CAS  Google Scholar 

  34. Moser B, Hanlon T, Kumar KS, suresh S (2006) Scr Mater 54:1151

    Article  CAS  Google Scholar 

  35. Liao XZ, Zhou F, Lavernia EJ, Srinivasan SG, Baskes MI, He DW, Zhu YT (2003) Appl Phys Lett 83:632

    Article  CAS  Google Scholar 

  36. Liao XZ, Zhou F, Lavernia EJ, He DW, Zhu YT (2003) Appl Phys Lett 83:5062

    Article  CAS  Google Scholar 

  37. Liao XZ, Srinivasan SG, Zhao YH, Baskes MI, Zhu YT, Zhou F, Lavernia EJ, Hu HF (2004) Appl Phys Lett 84:3564

    Article  CAS  Google Scholar 

  38. Wu X-L, Zhu YT, Ma E (2006) Appl Phys Lett 88:121905

    Article  Google Scholar 

  39. Lubarda VA, Schneider MS, Kalantar DH, Remington BA, Meyers MA (2004) Acta Mater 52:1397

    Article  CAS  Google Scholar 

  40. Hugo RC, Kung H, Weertman JR, Mitra R, Knapp JA, Follstaedt DM (2003) Acta Mater 51:1937

    Article  CAS  Google Scholar 

  41. Farkas D, Van Swygenhoven H, Derlet PM (2002) Phys Rev B 66:060101

    Article  Google Scholar 

  42. Van Swygenhoven H, Derlet PM, Hasnaoui A, Samaras M (2003) In: Tsakalakos T, Ovid’ko IA, Vasudevan AK (eds) Nanostructures: synthesis, functional properties and applications. Kluwer, Dordrecht, p 155

  43. Latapie A, Farkas D (2004) Phys Rev B 69:134110

    Article  Google Scholar 

  44. Ovid’ko IA, Sheinerman AG (2004) Acta Mater 52:1201

    Article  CAS  Google Scholar 

  45. Conrad H, Narayan J (2000) Scr Mater 42:1025

    Article  CAS  Google Scholar 

  46. Sutton AP, Balluffi RW (1996) Grain boundaries in crystalline materials. Oxford Sci., Oxford

  47. Bobylev SV, Ovid’ko IA (2006) Phys Rev B 73:064102

    Article  Google Scholar 

  48. Fedorov AA, Gutkin MY, Ovid’ko IA (2003) Acta Mater 51:887

    Article  CAS  Google Scholar 

  49. Gutkin MY, Ovid’ko IA, Skiba NV (2004) Acta Mater 52:1711

    Article  CAS  Google Scholar 

  50. Indenbom VI (1961) Sov Phys Sol State 3:1506

    Google Scholar 

  51. Gutkin MY, Ovid’ko IA (1994) Phil Mag A 70:561

    CAS  Google Scholar 

  52. Rybin VV, Zhukovskii IM (1978) Sov Phys Sol State 20:1056

    Google Scholar 

  53. Ovid’ko IA, Sheinerman AG (2006) Phil Mag 86:3487

    Article  CAS  Google Scholar 

  54. Ovid’ko IA, Reizis AB (2001) Phys Sol State 43:35

    Article  CAS  Google Scholar 

  55. Ovid’ko IA, Sheinerman AG (2003) Phil Mag 83:1551

    Article  CAS  Google Scholar 

  56. Perevezentsev VN, Pupynin AS, Svirina JV (2005) Mater Sci Eng A 410–411:273

    Google Scholar 

  57. Ovid’ko IA, Sheinerman AG (2005) Acta Mater 53:1347

    Article  CAS  Google Scholar 

  58. Ovid’ko IA, Sheinerman AG (2004) Rev Adv Mater Sci 6:21

    Google Scholar 

  59. Masumura RA, Hazzledine PM, Pande CS (1998) Acta Mater 46:4527

    Article  CAS  Google Scholar 

  60. Kim HS, Estrin Y, Bush MB (2000) Acta Mater 48:493

    Article  CAS  Google Scholar 

  61. Yamakov V, Wolf D, Phillpot SR, Gleiter H (2002) Acta Mater 50:61

    Article  CAS  Google Scholar 

  62. Fedorov AA, Gutkin MY, Ovid’ko IA (2002) Scr Mater 47:51

    Article  CAS  Google Scholar 

  63. Han BQ, Huang JY, Zhu YT, Lavernia EJ (2006) Acta Mater 54:3015

    Article  CAS  Google Scholar 

  64. Tellkamp VL, Melmed A, Lavernia EJ (2001) Met Mater Trans. A 32:2335

    Google Scholar 

  65. Zhang X, Wang H, Koch CC (2004) Rev Adv Mater Sci 6:53

    CAS  Google Scholar 

  66. Sergueeva AV, Mara NA, Mukherjee AK (2004) Rev Adv Mater Sci 7:67

    CAS  Google Scholar 

  67. Wang YM, Ma E (2004) Appl Phys Lett 85:2750

    Article  CAS  Google Scholar 

  68. Wang YM, Ma E, Valiev RZ, Zhu Y (2004) Adv Mater 16:328

    Article  CAS  Google Scholar 

  69. Gan Y, Zhou B (2001) Scr Mater 45:625

    Article  CAS  Google Scholar 

  70. Mukai T, Suresh S, Kita K, Sasaki H, Kobayashi N, Higashi K, Inoue A (2003) Acta Mater 51:4197

    Article  CAS  Google Scholar 

  71. Ovid’ko IA, Sheinerman AG (2006) Phil Mag 86:1415

    Article  CAS  Google Scholar 

  72. Pozdnyakov VA (2003) Tech Phys Lett 29:151

    Article  CAS  Google Scholar 

  73. Pozdnyakov VA, Glezer AM (2005) Phys Sol State 47:817

    Article  CAS  Google Scholar 

  74. Morozov NF, Ovid’ko IA, Petrov YV, Sheinerman AG (2003) Rev Adv Mater Sci 4:65

    Google Scholar 

  75. Gutkin MY, Ovid’ko IA (2004) Phil Mag Lett 84:655

    Article  CAS  Google Scholar 

  76. Ziman J (1949) Models of disorder. Cambridge University Press, Cambridge

  77. Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor and Francis, London

  78. Sahimi M (1994) Applications of percolation theory. Taylor and Francis, London

  79. Ashby MF, Gandhi C, Taplin DMR (1979) Acta Mater 27:699

    Article  CAS  Google Scholar 

  80. Gandhi C, Ashby MF (1979) Acta Mater 27:1565

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the Office of US Naval Research (grant N00014-05-1-0217), INTAS (grant 03-51-3779), INTAS-AIRBUS (grant 04-80-7339), Civilian Research and Development Foundation (grant # RUE2-2684-ST-05), Program of Support of Leading Scientific Schools (grant NSh-4518.2006.1 of the President of Russian Federation) and Russian Academy of Sciences Program ‘Structural Mechanics of Materials and Construction Elements’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Ovid’ko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovid’ko, I.A. Review on the fracture processes in nanocrystalline materials. J Mater Sci 42, 1694–1708 (2007). https://doi.org/10.1007/s10853-006-0968-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0968-9

Keywords

Navigation